
µqSim: Enabling Accurate and Scalable Simulation for Interactive Microservices

Yanqi Zhang, Yu Gan, and Christina Delimitrou
Electrical and Computer Engineering Department

Cornell University
{yz2297, yg397, delimitrou}@cornell.edu

Abstract— Current cloud services are moving away from
monolithic designs and towards graphs of many loosely-
coupled, single-concerned microservices. Microservices have
several advantages, including speeding up development and
deployment, allowing specialization of the software infras-
tructure, and helping with debugging and error isolation. At
the same time they introduce several hardware and software
challenges. Given that most of the performance and efficiency
implications of microservices happen at scales larger than what
is available outside production deployments, studying such
effects requires designing the right simulation infrastructures.

We present µqSim, a scalable and validated queueing net-
work simulator designed specifically for interactive microser-
vices. µqSim provides detailed intra- and inter-microservice
models that allow it to faithfully reproduce the behavior of
complex, many-tier applications. µqSim is also modular, allow-
ing reuse of individual models across microservices and end-to-
end applications. We have validated µqSim both against simple
and more complex microservices graphs, and have shown that
it accurately captures performance in terms of throughput and
tail latency. Finally, we use µqSim to model the tail at scale
effects of request fanout, and the performance impact of power
management in latency-sensitive microservices.

I. INTRODUCTION

An increasing amount of computing is now performed in
the cloud, primarily due to the resource flexibility benefits
for end users, and the cost benefits for both end users and
cloud providers [1]–[3]. Users obtain resource flexibility by
scaling their resources on demand and being charged only
for the time these resources are used, and cloud operators
achieve cost efficiency by multiplexing their infrastructure
across users [4]–[11].

Most of the services hosted in datacenters are governed
by strict quality of service (QoS) constraints in terms of
throughput and tail latency, as well as availability and
reliability guarantees [5], [6], [12], [13]. In order to satisfy
these often conflicting requirements, cloud services have
seen a significant shift in their design, moving away from the
traditional monolithic applications, where a single service
encompasses the entire functionality, and adopting instead
a multi-tier microservices application model [14], [15].
Microservices correspond to fine-grained, single-concerned
and loosely-coupled application tiers, which assemble to
implement more sophisticated functionality [14], [16]–[24].

Microservices are appealing for several reasons. First, they
improve programmability by simplifying and accelerating

deployment through modularity. Unlike monolithic services,
each microservice is responsible for a small, well-defined
fraction of the entire application’s functionality, with dif-
ferent microservices being independently deployed. Second,
microservices can take advantage of language and program-
ming framework heterogeneity, since they only require a
common cross-application API, typically over remote proce-
dure calls (RPC) or a RESTful API [25]. Third, individual
microservices can easily be updated, or swapped out and
replaced by newer modules without major changes to the
rest of the application’s architecture. In contrast, monoliths
make frequent updates cumbersome and error-prone, and
limit the set of programming languages that can be used
for development.

Netflix Twitter

Amazon Social Network

Figure 1: Microservices
graphs in three large cloud
providers [14]–[16], and our
Social Network service.

Fourth, microservices
simplify correctness and
performance debugging,
as bugs can be isolated
to specific components,
unlike monoliths, where
troubleshooting often
involves the end-to-
end service. Finally,
microservices fit nicely
the model of a container-
based datacenter,
with a microservice
per container, and
microservices being
scaled independently
according to their
resource demands. An
increasing number of cloud service providers, including
Twitter, Netflix, AT&T, Amazon, and eBay have adopted
this application model [14].

Despite their advantages, microservices introduce several
hardware and software challenges. First, they put increased
pressure on the network system, as dependent microser-
vices reside in different physical nodes, relying on an RPC
or HTTP layer for communication. Second, microservices
further complicate cluster management, as instead of al-
locating resources to a single service, the scheduler must
now determine the impact of dependencies between any
two microservices in order to guarantee end-to-end QoS.

1

Microservices further exacerbate tail-at-scale effects [12]
as a single poorly-configured microservices on the critical
path can cause cascading QoS violations resulting in end-
to-end performance degradation. Typical dependency graphs
between microservices in production systems involve several
hundred microservices; Fig. 1 shows a few representative
examples from Netflix, Twitter, Amazon [14], and one of
the applications used later in this paper.

Given the fact that unpredictable performance often only
emerges at large scale, it is critical to study the resource
management, availability, and responsiveness of microser-
vices at scales larger than what is possible in typical research
facilities. Towards this effort we leverage the following
insight: a positive side-effect of the simplicity of individual
microservices is that - unlike complex monoliths - they
conform to the principles of queueing theory. In this work we
use this insight to enable accurate microservices simulation
that relies on queueing networks to capture the impact of
dependencies between microservices.

We present µqSim, an accurate and scalable simulator for
interactive cloud microservices. µqSim captures dependen-
cies between individual microservices, as well as application
semantics such as request batching, blocking connections,
and request pipelining. µqSim relies on a user-provided
high-level declarative specification of the microservices de-
pendency graph, and a description of the available server
platforms. µqSim is an event-driven simulator, and uses a
centralized scheduler to dispatch requests to the appropriate
microservices instances.

We validate µqSim against both simple and complex
microservices graphs, including multi-tier web applications,
services with load balancing, and services with high request
fanout, where all leaf nodes must respond before the result
is returned to the user. We show that µqSim faithfully
reproduces the performance (throughput and tail latency)
of the real application in all cases. We then use µqSim to
evaluate two use cases for interactive microservices. First,
we show that tail at scale effects become worse in microser-
vices compared to single-tier services, as a single under-
performing microservice on the critical path can degrade
end-to-end performance. Second, we design and evaluate
a QoS-aware power management mechanism for microser-
vices both in a real server and in simulation. The power
manager determines the appropriate per-microservice QoS
requirements needed to meet the end-to-end performance
constraints, and dynamically adjusts frequency accordingly.

II. RELATED WORK

Queueuing network simulators are often used to gain
insight on performance/resource trade-offs in systems that
care about request latency [26]–[30]. The closest system
to µqSim is BigHouse, an event-driven queueing simulator
targeting datacenter service simulation. BigHouse represents
workloads as inter-arrival and service distributions, whose

characteristics are obtained through offline profiling and
online instrumentation. The simulator then models each
application as a single queue, and runs multiple instances
in parallel until performance metrics converge. While this
offers high simulation speed, and can be accurate for sim-
ple applications, it introduces non-negligible errors when
simulating microservices because intra-microservice stages
cannot be captured by a single queue. For example, a request
to an application like memcached must traverse multiple
stages before completion, including network processing,
e.g., TCP/IP rx, processing in OS event-driven libraries
like epoll and libevent, reading the received requests
from the socket, and finally processing the user request.
Along each of these stages there are queues, and ignoring
them can underestimate the impact of queueing on tail
latency. Furthermore, BigHouse is only able to model single
tier applications. Microservices typically consist of multiple
tiers, and inter-tier dependencies are not a straightforward
pipeline, often involving blocking, synchronous, or cyclic
communication between microservices.
µqSim takes a different approach by explicitly model-

ing each application’s execution stages, and accounting for
queueing effects throughout execution, including request
batching, e.g., in epoll, request blocking, e.g., in http 1/1.1
& disk I/O, and request parallelism, e.g., across threads or
processes. Given that many of these sources of queueing
are repeated across microservices, µqSim provides modular
models of application stages, which can be reused across di-
verse microservices. Moreover, µqSim supports user-defined
microservice graph topology and flexible blocking and syn-
chronization behaviors between tiers of microservices.

III. DESIGN

µqSim is designed to enable modularity and reuse of
models across microservices and end-to-end applications,
as well as to allow enough flexibility for users to incor-
porate their own applications in the simulator. The core of
µqSim is implemented in standard C++ with 25,000 lines of
codes. The simulator interface requires the user to express
a microservice’s internal logic using a JSON configuration
file, similar to the one shown in 1. The user additionally
needs to express the end-to-end service’s architecture, i.e.,
how are different microservices connected to each other,
and what hardware resources are available in the cluster.
We summarize the input users express to the simulator in
Table I. Below we detail each of these components.

A. Simulation Engine

µqSim uses discrete event simulation, as shown in Fig. 2.
An event may represent the arrival or completion of a job (a
request in a microservice), as well as cluster administration
operations, like changing a server’s DVFS setting. Each event
is associated with a timestamp, and all events are stored in
increasing time order in a priority queue. In every simulation

2

Table I: Simulation inputs.

service.json Internal architecture of a microservice
graph.json Inter-microservice topology
path.json Paths (sequence of microservices)

that requests follow across microservices
machines.json Server machines & available resources
client.json Input load pattern
histograms Processing time PDF per microservice

Client

Microservice	Network

1)	Client	generates	job	i2)	Register	job	arrival	event

Event
Queue

3)	Job	arrival	event	
triggered,	dispatch	
to microservice 4)	Process	job	i &

trigger	blocking	operations
5)	Register	job	
completion	event

6)	Job	completion	
event	triggered,	
dispatch	child	jobs	to	
downstream	services

Figure 2: Overview of the event-driven behavior in µqSim.

cycle, the simulation queue manager queries the priority
queue for the earliest event. It then uses the microservice
model the event corresponds to to compute the execution
time and resources required to process the event, as well
as to insert causally dependent events to the priority queue.
These include requests triggered in other microservices as
a result of the processed event. Simulation completes when
there are no more outstanding events in the priority queue.

B. Modeling Individual Microservices

µqSim models each individual microservice with two
orthogonal components: application logic and execution
model. The application logic captures the behavior of a
microservice. The basic element of the application logic
is a stage, which represents an execution phase within the
microservice, and is essentially a queue-consumer pair, as
defined in queueing theory [31], [32]. Each stage can be
configured with different queueing features like batching or
pipelining, and is coupled with a job queue. For example,
the epoll stage is coupled with multiple subqueues, one
per network connection. A stage is also assigned to one or
more execution time distributions that describe the stage’s
processing time under different settings, like different DVFS
configurations, different loads and different thread counts.
µqSim supports processing time expressed using regular
distributions, such as exponential, or via processing time
histograms collected through profiling, which requires users
to instrument applications and record timestamps at bound-
aries of queueing stages.

LB LFE

L

L

L

L

L

L

LC

L

L L

L
L

L

L

L

L
DB

DB

DB

DB

DB

L DB

Front-end

Logic	tiers Back-end

Client

TCP	RX Epoll Nginx	
proc TCP	TX

Intra-microservice architecture

Inter-microservice dependency	graph

Figure 3: Overview of the modeling of an end-to-end service
built with microservices in µqSim (top), and modeling of the
execution stages within a single microservice (bottom). C:
client, LB: load balancer, FE: front-end, L: logic tier, DB:
database tier.

Multiple application logic stages are assembled to form
execution paths, corresponding to a microservice’s different
code paths. Finally, the model of a microservice also in-
cludes a state machine that specifies the probability that a
microservice follows different execution paths.

Fig. 1 shows memcached’s application logic and
execution path using µqSim’s JSON template. The
main stages include epoll, socket_read, and
memcached_processing. This excludes network
processing, which is modeled as a separate process in the
simulator: each server is coupled with a network processing
process as a standalone service, and all microservices
deployed on the same server share the processed handling
interrupts. Both epoll and socket_read use request
batching, and can return more than one jobs. The epoll
queue classifies jobs into subqueues based on socket
connections, and returns the first N jobs of each active
subqueue (defined in “queue parameter”). socket_read
similarly classifies jobs based on connections, but returns
the first N jobs from a single ready connection at a time.
The memcached_processing and socket_send
stages do not use batching, and their queues simply store
all jobs in one queue.

It is important to note that the processing time of epoll
and socket_read are runtime dependent: epoll’s ex-
ecution time increases linearly with the number of active
events that are returned, and socket_read’s processing
time is also proportional to the number of bytes read from
socket. Finally, memcached’s execution model consists of
two paths, one for read requests, and one for write. These
two paths consist of exactly the same stages in the same
order, and are only used to distinguish between different

3

Table II: Specification of the server used for all validation
experiments of µqSim.

Model Intel(R) Xeon(R) CPU E5-2660 v3
OS Ubuntu 14.04(kernel 4.4.0)
Sockets 2
Cores/Socket 10
Threads/Core 2
Min/Max DVFS Freq. 1.2GHz/2.6GHz
L1 Inst/Data Cache 32KB/32KB
L2 Cache 256KB
L3 (Last-Level) Cache 25.6MB
Memory 8x16GB 2400MHz DDR4
Hard Drives 2x 2TB 7.2K RPM SATA
Network Bandwidth 1Gbps

processing time distributions. Each path for memcached is
deterministic, therefore there is no need for a probabil-
ity distribution to select an execution path. One example
where probabilistically selecting execution paths is needed
is MongoDB, where a query could be either a cache hit
that only accesses memory, or a cache miss that results
in disk I/O. The probability for each path in that case is
a function of MongoDB’s working set size and allocated
memory. Currently µqSim only models applications running
on standard Linux. We defer modeling acceleration tech-
niques like user level networking, such as DPDK and FPGA
accelerated networking to future work.

The execution model of a microservice also describes
how a job is processed by the simulator. Currently µqSim
supports two models: simple and multi-threaded. A simple
model directly dispatches jobs onto hardware resources like
CPU, and is mainly used for simple (single stage) services.
Multi-threaded models add the abstraction of a thread or
process, which users can specify either statically or using a
dynamic thread/process spawning policy. In a multi-threaded
model, a job will be first dispatched to a thread, and the
microservice will search for adequate resources to execute
the job, or stall if no resources are available. The multi-
threaded model captures context switching and I/O blocking
overheads, and is typically used for microservices with mul-
tiple execution stages that include blocking/synchronization.

C. Modeling a Microservice Architecture

A microservice architecture is specified in three JSON
files that describe the cluster configuration, microservice
deployment, and inter-microservice logic. The cluster con-
figuration file (machines.json) records the available
resources on each server. The microservice deployment file
(graph.json) specifies the server on which a microser-
vice is deployed – if specified, the resources assigned to
each microservice, and the execution model (simple or multi-
threaded) each microservice is simulated with. The microser-
vice deployment also specifies the size of the connection
pool of each microservice, if applicable.

Listing 1: JSON Specification for memcached
{” s e r v i c e n a m e ” : ” memcached ” ,

” s t a g e s ” : [{
” s tage name ” : ” e p o l l ” , ” s t a g e i d ” : 0 ,
” q u e u e t y p e ” : ” e p o l l ” , ” b a t c h i n g ” : t r u e ,
” q u e u e p a r a m e t e r ” : [n u l l , N] } , {
” s tage name ” : ” s o c k e t r e a d ” , ” s t a g e i d ” : 1 ,
” q u e u e t y p e ” : ” s o c k e t ” , ” b a t c h i n g ” : t r u e ,
” q u e u e p a r a m e t e r ” : [N] } , {
” s tage name ” : ” memcached process ing ” ,
” s t a g e i d ” : 2 , ” q u e u e t y p e ” : ” s i n g l e ” ,
” b a t c h i n g ” : f a l s e , ” q u e u e p a r a m e t e r ” : n u l l } , {
” s tage name ” : ” s o c k e t s e n d ” , ” s t a g e i d ” : 3 ,
” q u e u e t y p e ” : ” s i n g l e ” , ” b a t c h i n g ” : f a l s e ,
” q u e u e p a r a m e t e r ” : n u l l }] ,

” p a t h s ” : [{
” p a t h i d ” : 0 , ” path name ” : ” memcached read ” ,
” s t a g e s ” : [0 , 1 , 2 , 3] } , {
” p a t h i d ” : 1 , ” path name ” : ” memcached wri te ” ,
” s t a g e s ” : [0 , 1 , 2 , 3] }] }

Finally, the inter-microservice path file (path.json)
specifies the sequence of individual microservices each job
needs to go through. Fig. 3 shows such a dependency graph
between microservices, from a client (C), to a load balancer
(LB), front-end (FE), logic tiers (L), and back-end databases
(DB), The same figure also shows the intra-microservice
execution path for one of the microservices, front-end,
implemented in this example using NGINX [33]. If the appli-
cation exhibits control flow variability, users can also specify
multiple inter-microservice paths, and the corresponding
probability distribution for them. The basic elements of an
inter-microservice path are path nodes, which are connected
in a tree structure and serve three roles:

• Specify the microservice, the execution path within the
microservice, and the order of traversing individual
microservices. When entering a new path node, the job
is sent to a microservice instance designated by the
path node and connected with the microservices that the
job has already traversed, as defined in graph.json.
Each path node can have multiple children, and after
execution on the current path node is complete, µqSim
makes a copy of the job for each child node, and sends
it to a matching microservice instance.

• Express synchronization. Synchronization primitives
are prevalent in microservice architectures, such as in
the case where a microservice can start executing a
job if and only if it has received all information from
its upstream microservices. In µqSim, synchronization
requirements are expressed in terms of the fan-in of
each inter-microservice path node: before entering a
new path node, a job must wait until execution in all
parent nodes is complete. For example, if NGINX 0
serves as a proxy and NGINX 1 and NGINX 2 operate
as file servers, for each user request, NGINX 0 sends
requests to both NGINX 1 and NGINX 2, waits to
synchronize their responses, and then sends the final
response to the client.

4

Client

NGINX

Memcached

Client

NGINX

Memcached MongoDB

Figure 4: The architecture of the 2- and 3-tier applications
(NGINX-memcached and NGINX-memcached-MongoDB).

• Encode blocking behavior. Blocking behavior between
microservices is common in RPC frameworks, http1/1.1
protocols, and I/O accessing. To represent arbitrary
blocking behavior, each path node has two operation
fields, one upon entering the node and another upon
leaving the node, to trigger blocking or unblocking
events on a specific connection or thread. Assume
for example a two-tier application, with NGINX as
the front-end webserver, and memcached as the in-
memory caching tier. The client queries the webserver
over http 1.1. Once a job starts executing, it blocks
the receiving side of the incoming connection (since
only one outstanding request is allowed per connec-
tion in http 1.1). The condition to unblock this path
once request processing is complete is also specified
in the same JSON file. When the job later returns
the <key,value> pair from memcached to NGINX,
µqSim searches the list of job ids for the one matching
the request that initiated the blocking behavior, in order
to unblock the connection upon completion of the
current request. Users can also specify other blocking
primitives, like thread blocking, in µqSim.

IV. VALIDATION

We now validate µqSim against a set of real microservices
running on a server cluster. The configuration of each server
is detailed in Table II. We validate µqSim with respect to
two aspects of application behavior.

• First, we verify that the simulator can reproduce the
load-latency curves of real applications, including their
saturation point. Given that latency increases exponen-
tially beyond saturation, ensuring that the simulator
captures the bottlenecks of the real system is essential
in its effectiveness.

• Second, we verify that µqSim accurately captures the
magnitude of the end-to-end average and tail latency of
real applications.

A. Simple Multi-tier Microservices

We first validate µqSim against a simple 2- and 3-tier
application, comprised of popular microservices deployed
in many production systems. The 2-tier service consists

Figure 6: Validation of the three-tier (NGINX-memcached-
MongoDB) application.

of a front-end webserver, implemented using NGINX, and
an in-memory caching key-value store, implemented with
memcached. The 3-tier application additionally includes a
persistent back-end database, implemented using MongoDB.
The architectures of the two applications are shown in
Fig.4(a) and (b) respectively. In the 2-tier service, NGINX
receives the client request over http 1.1, queries memcached
for the requested key, and returns the <key,value>
pair to the client. In the 3-tier service, NGINX first queries
the cache for the requested key (memcached), and if not
present, queries the back-end database (MongoDB). Mem-
cached implements a write-allocate policy; on a (mem)cache
miss, the <key,value> is also written to memcached to
speed up subsequent accesses.

For all experiments, we use an open-loop workload gen-
erator, implemented by modifying the wrk2 client [34]. The
client runs on a dedicated server, and uses 16 threads and
320 connections to ensure no client-side saturation. For this
experiment both job inter-arrival times and request value
sizes are exponentially distributed. Finally, for both the 2-
and 3-tier services, memcached is allocated 1GB memory,
and MongoDB has unlimited disk capacity.

For the 2-tier application, we varied the number of threads
and processes for NGINX and memcached to observe their
respective scalability. We specifically evaluate configurations
with 8 processes for NGINX and {4,2} threads for mem-
cached, as well as a 4-process configuration for NGINX
and {2,1}-thread configurations for memcached. The 3-
tier application is primarily bottlenecked by the disk I/O
bandwidth of MongoDB, so scaling the number of down-
stream microservices does not have a significant impact on
performance. We evaluate an 8-process configuration for
NGINX and and a 2-thread configuration for memcached.
Each thread (or process) of every microservice is pinned
to a dedicated physical core to avoid interference from
the OS scheduler’s decisions. Results reported for the real
experiments are averaged across 3 runs.

Fig. 5 shows the comparison between the real and sim-
ulated two-tier application across thread/process configura-
tions. Across all concurrency settings, µqSim faithfully re-
produces the load-latency curve of the real system, including
its saturation point. It also accurately captures that giving

5

Figure 5: Validation of the two-tier (NGINX-memcached) application across different thread configurations for each
microservice.

more resources to memcached does not further improve
throughput before saturation, since the limiting factor is
NGINX. Additionally, before the 2-tier application reaches
saturation, the simulated mean latencies are on average
0.17ms away from the real experiments, and the simulated
tail latencies are on average 0.83ms away from the real ones.

Fig. 6 shows the same experiment for the 3-tier service.
The results are again consistent between real and simulated
performance, with the simulated mean latencies being on
average 1.55ms away from real measurements, and the
simulated tail latencies deviating by 2.32ms on average.

B. Capturing Load Balancing & Fanout Effects

Load balancing: Load balancers are used in most large-
scale cloud environments to fairly divide the load across
instances of a scale-out application. We now examine how
accurate µqSim is in capturing the performance impact of
load balancing. We construct a load balancing scenario using
an instance of NGINX as a load-balancing proxy, and several
instances of NGINX of the same setup as the scaled-out web-
servers behind the proxy. For each client request, the proxy
chooses one webserver to forward the request to, in a round-
robin fashion. Fig. 7 shows the setup for load balancing,
and Fig. 8 shows the load-latency (99th percentile) curves
for the real and simulated system. The saturation load scales
linearly for a scale out factor of 4 and 8 from 35kQPS to
70kQPS, and sub-linearly beyond that, e.g., for scale-out of
16, saturation happens at 120kQPS as the cores handling the
interrupts (soft_irq processes) saturate before the NGINX
instances. In all cases, the simulator accurately captures the
saturation pattern of the real load balancing scenario.
Request fanout: We also experiment with request fanout,
which is common in applications with distributed state. In

this case, a request only completes when responses from all
fanout services have been received [12]. Request fanout is
a well-documented source of unpredictable performance in
cloud infrastructures, as a single slow leaf node can degrade
the performance of the majority of user requests [12], [35]–
[37]. As with load-balancing, the fanout experiment uses an
NGINX instance as a proxy, which - unlike load balancing
- now forwards each request to all NGINX instances of
the next tier. We scale the fanout factor from 4 to 16
servers, and assign 1 core and 1 thread to each fanout
service. We also dedicate 4 cores to network interrupts. Each
requested webpage is 612 bytes in size, and the workload
generator is set up in a similar way to the 2- and 3-tier
experiments above. The system configuration is shown in
Fig. 9 and the load-latency (99th percentile) curve for the
real and simulated system is shown in Fig. 8. For all fanout
configurations, µqSim accurately reproduces the tail latency
and saturation point of the real system, including the fact that
as fanout increases, there is a small decrease in saturation
load, as the probability that a single slow server will degrade
the end-to-end tail latency increases.

C. Simulating RPC Requests

Remote Procedure Calls (RPC) are widely deployed in
microservices as a cross-microservice RESTful API. In this
section we demonstrate that µqSim can accurately capture
the performance of a popular RPC framework, Apache
Thrift [25], and in the next section we show that it can faith-
fully reproduce the behavior of complex microservices using
Thrift as their APIs. We set up a simple Thrift client and
server; the server responds with a “Hello World” message to
each request. Given the lack of application logic in this case,
all time goes towards processing the RPC request. The real

6

NGINX load balancer

NGINX

web server

NGINX

web server

NGINX

web server…

Client 0 Client 1 Client N

…

Figure 7: Load balancing in NGINX.

Figure 8: Validation of load balancing results.

and simulated results are shown in Fig.12. In both cases the
Thrift server saturates beyond 50kQPS, while the low-load
latency does not exceed 100us. Beyond the saturation point
the simulator expects latency that increases more gradually
with load compared to the real system. The reason for this
is that the simulator does not capture timeouts and the
associated overhead of reconnections, which can cause the
real system’s latency to increase rapidly.

D. Simulating Complex Microservices

We have also built a simplified end-to-end application
implementing a social network using microservices, illus-
trated in Fig.11. The service implements a unidirectional,
broadcast-style social network, where users can follow each
other, post messages, reply publicly or privately to another
user, and browse information about a given user. We focus on
the later function in this scenario for simplicity. Specifically,
the client wants to retrieve a post from a certain user, via
the Thrift Frontend by specifying a given userId and
postId. Upon receiving this request from the client, the
Thrift Frontend sends requests to User Service and Post
Service, which search for the user profile and corresponding
post respectively. Once the user and post information are
received, Thrift Frontend extracts any media embedded to
the user’s post via Media Service, composes a response with
the user’s metadata, post content, and media (if applicable),
and returns the response to the client. The user, post, and
media objects are stored in the corresponding MongoDB in-
stances, and cached in memcached to lower request latency.
All cross-microservice communication in this application

NGINX fanout server

Client

NGINX tier-2

server 0

NGINX tier-2

server 1

NGINX tier-2

server N…

Figure 9: Request fanout in NGINX.

Figure 10: Validation of request fanout impact in NGINX.

happens using Apache Thrift. The comparison between the
real and simulated system is shown in Fig. 12b. At low load,
µqSim closely matches the latency of the real application,
while at high load it saturates at a similar throughput as
the real social network service. This application contains
a large number of queues and dependent microservices,
including applications with fanout, synchronization, and
blocking characteristics, showing that µqSim can capture the
behavior of complex microservices accurately.

E. Comparison with BigHouse

Fig. 13 shows the comparison of µqSim and BigHouse
simulating a single-process NGINX webserver and a 4-thread
memcached. In BigHouse both NGINX and memcached are
modeled as a single stage server. In µqSim we use the model
shown in Fig. 1 for memcached, and we adopt a similar
model for NGINX, consisting of two stages: epoll and
handler_processing. For both applications, µqSim
captures the real saturation point closely, while BigHouse
saturates at much lower load than the real experiments. The
reason is that in µqSim the processing time of batching
stage epoll is amortized across all batched requests, as
in the real system. In BigHouse, however, each application
is modeled as a single stage so the entire processing time
of epoll is accounted for in every request, leading to
overestimation of the accumulated tail latency.

V. USE CASES

In this section we discuss two case studies that leverage
µqSim to obtain performance and efficiency benefits. In the
first case study, we experiment with the effect of slow servers

7

Client

Thrift Frontend

User
Service

M$ Mongo

Post
Service

M$ Mongo

Media
Service

M$ Mongo

Figure 11: Architecture of the social network microservices
application.

Figure 12: Validation of RPC request simulation using
Apache Thrift [25].

in clusters of different sizes in order to reproduce the tail-
at-scale effects documented in [12]. In the second study,
we design a power management algorithm for interactive
microservices, and show its behavior on real and simulated
servers. The platforms we use for real experiments are the
same as before (Table II).

A. Tail@Scale Effect

As cluster sizes and request fanouts grow, the impact of
a small fraction of slow machines are amplified, since a few
stragglers dominate tail latency. In this scenario we simulate

Figure 13: Comparison of µqSim and BigHouse

Figure 14: The tail at scale effects of request fanout.

clusters of different sizes, ranging from 5 servers to 1000
servers, in a similar fanout configuration as the one discussed
in [12]. Under this setup a user request fans out to all servers
in the cluster, and only returns to the user after the last server
responds. To capture similar effects as in [12] the application
is a simple one-stage queueing system with exponentially
distributed processing time, around a 1ms mean. To emulate
slow servers, we increase the average processing time of a
configurable fraction of randomly-selected servers by 10×.
Fig. 14 shows the impact of slow servers on tail latency
as fanout (cluster size) increases. For the same percentage
of slow servers, e.g., 1%, the larger the size of the cluster,
the more likely it is that tail latency is defined by the slow
machines. Similarly, as the fraction of slow servers increases,
so does the probability for high tail latency, complying to
the probabilistic expression discussed in [12]. Note that for
cluster sizes greater than 100 servers, 1% of slow servers
is sufficient to drive tail latency high, consistent with the
results in [12].

B. Power Management

The lack of energy proportionality in datacenters is a
well-documented problem [4], [36], [38]. Quality-of-service-
aware power management is challenging for cloud appli-
cations, as resource utilization does not always correlate
closely with QoS, resulting in significant increases in tail
latency, even when the server is not saturated [36]. Power
management is even more challenging in multi-tier ap-
plications and microservices, since dependencies between
neighboring microservices introduce backpressure effects,
creating cascading hotspots and QoS violations through the
system. This makes it hard to determine the appropriate
frequency setting for each microservice, and to identify
which microservice is the culprit of a QoS violation.

Our proposed power management algorithm is based on
the intuition that reasoning about QoS guarantees for the
end-to-end application requires understanding the interac-
tions between dependent microservices, and how changing
the performance requirements of one tier affects the rest

8

Algorithm 1 Power Management Algorithm

1: while True do
2: if timenow − timeprev cycle<Interval then
3: sleep(Interval)
4: end if
5: if stats[end2end] < Target then
6: if stats no relaxed than fail tuples then
7: bucket.insert(stats)
8: end if
9: increase bucket.preference

10: if CycleCount > Interval then
11: Choose new target bucket
12: Choose per-tier QoS
13: end if
14: Slow down at most 1 tier based on slack
15: else
16: decrease bucket.preference
17: bucket.failing list.insert(current target)
18: Choose new target bucket
19: Choose per-tier QoS
20: Speed up all tiers with higher latency than target
21: end if
22: end while

of the application. We adopt a divide-and-conquer approach
by dividing the end-to-end QoS requirement to per-tier
QoS requirements, because, as queueing theory suggests,
the combination of per-tier state should be recurrent and
reproducible, which indicates that as long as the per-tier
latencies achieve values that have allowed the end-to-end
QoS to be met in the past, the system should be able to
recover from a QoS violation.

Based on this intuition, our algorithm divides the tail
latency space into a number of buckets, with each bucket
corresponding to a given end-to-end QoS range, and clas-
sifies the observed per-tier latencies into the corresponding
buckets. At runtime, the scheduler picks one per-tier latency
tuple from a certain bucket, and uses it as the per-tier QoS
target. Different buckets are equally likely to be visited
initially, and as the application execution progresses, the
scheduler learns which buckets are more likely to meet the
end-to-end tail latency requirement, and adjusts the weights
accordingly. To refine the recorded per-tier latencies, every
bucket also keeps a list of previous per-tier tuples that
fail to meet QoS when used as the latency target, and a
new per-tier tuple is only inserted if it is no more relaxed
than any of the failing tuples of the corresponding bucket.
This way the scheduler eventually converges to a set of
per-tier QoS requirements that have a high probability to
meet the required end-to-end performance target. In order
to test whether more aggressive power management settings
are acceptable, the scheduler periodically selects a tier with

Figure 15: Load fluctuation under the examined diurnal load.

Table III: Power management QoS violation rates.

Decision Intervals 0.1s 0.5s 1s
Simulated System 0.6% 2.2% 5.0%
Real System 1.5% 2.7% 6.0%

high latency slack to slow down, and observes the change
in end-to-end performance. The scheduler only slows down
1 tier at a time, to prevent cascading violations caused by
interactions between tiers (like connection pool exhaustion
and blocking). The pseudo-code for the power management
algorithm is shown in Algo. 1.

We evaluate the power management algorithm above with
the 2-tier application both using µqSim and real servers.
To highlight the potential of power management, we drive
the application with a diurnal input load, shown in Fig. 15.
To simulate the impact of power management in µqSim,
we adjust the processing time of each execution stage as
frequency changes by providing histograms corresponding
to different frequencies. We also vary the decision interval of
the scheduler, from 0.1s to 1s. Fig.16 shows the tail latency
and per-tier frequency over time under different decision
intervals, and Table III shows the fraction of time for which
QoS is violated.

Unsurprisingly, the real system is slightly more noisy
compared to µqSim, due to effects not modeled in the
simulator, such as request timeouts, TCP/IP contention, and
operating system interference from scheduling and context
switching. The lower latency jitter in the simulator also
results in less frequent changes in power management de-
cisions. Nonetheless, both systems follow similar patterns
in their decision process, and converge to very similar
tail latencies. The reason why tail latency in both cases
converges to around 2ms despite a 5ms QoS target, is the
coarse frequency-voltage granularity of the power manage-
ment technique we use – DVFS. The discrete frequency
settings enabled by DVFS can only lead to discrete pro-
cessing speeds, and therefore discrete latency ranges. As a
result, further lowering frequency to reduce latency slack
would result in QoS violations. More fine-grained power
management techniques, such as RAPL [36], would help
bring the instantaneous tail latency closer to the QoS.

9

Figure 16: Tail latency and frequency settings when employing the power management mechanism of Algo. 1. We show
tail latencies for both the real and simulated systems.

VI. CONCLUSIONS

We presented µqSim, a scalable and validated queue-
ing network simulator for interactive microservices. µqSim
offers detailed models both for execution phases within a
single microservice, and across complex dependency graphs
of microservices. We have validated µqSim against appli-
cations with few up to many tiers, as well as scenarios
of load balancing and request fanout, and showed minimal
differences in throughput and tail latency in all cases.
Finally, we showed that µqSim can be used to gain insight
into the performance effects that emerge in systems of scale
larger than what can be evaluated outside a production
cloud environment, as well as when using mechanisms, such
as power management, that aim to improve the resource
efficiency of large-scale datacenters. We plan to open-source
µqSim to motivate more work in the field of microservices.

REFERENCES

[1] L. Barroso and U. Hoelzle, The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines.
MC Publishers, 2009.

[2] L. Barroso, “Warehouse-scale computing: Entering the
teenage decade,” ISCA Keynote, SJ, June 2011.

[3] C. Reiss, A. Tumanov, G. Ganger, R. Katz, and M. Kozych,
“Heterogeneity and dynamicity of clouds at scale: Google
trace analysis,” in Proceedings of SOCC, 2012.

[4] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis, “Heracles: Improving resource efficiency at
scale,” in Proc. of the 42Nd Annual International Symposium
on Computer Architecture (ISCA), Portland, OR, 2015.

[5] C. Delimitrou and C. Kozyrakis, “Paragon: QoS-Aware
Scheduling for Heterogeneous Datacenters,” in Proceedings
of the Eighteenth International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), Houston, TX, USA, 2013.

[6] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-Efficient
and QoS-Aware Cluster Management,” in Proc. of ASPLOS,
Salt Lake City, 2014.

[7] J. Mars and L. Tang, “Whare-map: heterogeneity in ”homoge-
neous” warehouse-scale computers,” in Proceedings of ISCA,
Tel-Aviv, Israel, 2013.

[8] R. Nathuji, A. Kansal, and A. Ghaffarkhah, “Q-clouds: Man-
aging performance interference effects for qos-aware clouds,”
in Proceedings of EuroSys, Paris,France, 2010.

[9] R. Nathuji, C. Isci, and E. Gorbatov, “Exploiting platform
heterogeneity for power efficient data centers,” in Proceedings
of ICAC, Jacksonville, FL, 2007.

[10] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa,
“Bubble-up: increasing utilization in modern warehouse scale
computers via sensible co-locations,” in Proceedings of MI-
CRO, Porto Alegre, Brazil, 2011.

10

[11] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux:
precise online qos management for increased utilization in
warehouse scale computers,” in Proceedings of ISCA, 2013.

[12] J. Dean and L. A. Barroso, “The tail at scale,” in CACM, Vol.
56 No. 2.

[13] C. Delimitrou and C. Kozyrakis, “QoS-Aware Scheduling in
Heterogeneous Datacenters with Paragon,” in ACM Transac-
tions on Computer Systems (TOCS), Vol. 31 Issue 4, Decem-
ber 2013.

[14] “Microservices workshop: Why, what, and how to
get there.” http://www.slideshare.net/adriancockcroft/
microservices-workshop-craft-conference.

[15] “The evolution of microservices.” https://www.slideshare.net/
adriancockcroft/evolution-of-microservices-craft-conference,
2016.

[16] “Decomposing twitter: Adventures in service-
oriented architecture.” https://www.slideshare.net/InfoQ/
decomposing-twitter-adventures-in-serviceoriented-architecture.

[17] T. Ueda, T. Nakaike, and M. Ohara, “Workload characteriza-
tion for microservices,” in Proc. of IISWC, 2016.

[18] A. Sriraman and T. F. Wenisch, “usuite: A benchmark suite
for microservices,” in 2018 IEEE International Symposium on
Workload Characterization, IISWC 2018, Raleigh, NC, USA,
September 30 - October 2, 2018, pp. 1–12, 2018.

[19] X. Zhou, X. Peng, T. Xie, J. Sun, C. Xu, C. Ji, and W. Zhao,
“Benchmarking microservice systems for software engineer-
ing research,” in Proceedings of the 40th International Con-
ference on Software Engineering: Companion Proceeedings,
ICSE ’18, (New York, NY, USA), pp. 323–324, ACM, 2018.

[20] N. Kratzke and P.-C. Quint, “Ppbench,” in Proceedings of
the 6th International Conference on Cloud Computing and
Services Science - Volume 1 and 2, CLOSER 2016, (Portu-
gal), pp. 223–231, SCITEPRESS - Science and Technology
Publications, Lda, 2016.

[21] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki,
A. Bruno, J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi,
Y. He, B. Clancy, C. Colen, F. Wen, C. Leung, S. Wang,
L. Zaruvinsky, M. Espinosa, R. Lin, Z. Liu, J. Padilla,
and C. Delimitrou, “An Open-Source Benchmark Suite for
Microservices and Their Hardware-Software Implications for
Cloud and Edge Systems,” in Proceedings of the Twenty
Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
April 2019.

[22] Y. Gan and C. Delimitrou, “The Architectural Implications
of Cloud Microservices,” in Computer Architecture Letters
(CAL), vol.17, iss. 2, Jul-Dec 2018.

[23] Y. Gan, M. Pancholi, D. Cheng, S. Hu, Y. He, and C. Delim-
itrou, “Seer: Leveraging Big Data to Navigate the Complexity
of Cloud Debugging,” in Proceedings of the Tenth USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud),
July 2018.

[24] Y. Gan, Y. Zhang, K. Hu, Y. He, M. Pancholi, D. Cheng, and
C. Delimitrou, “Seer: Leveraging Big Data to Navigate the
Complexity of Performance Debugging in Cloud Microser-
vices,” in Proceedings of the Twenty Fourth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, April 2019.

[25] “Apache thrift.” https://thrift.apache.org.

[26] D. Meisner, J. Wu, and T. F. Wenisch, “Bighouse: A simu-
lation infrastructure for data center systems,” in Performance
Analysis of Systems and Software (ISPASS), 2012 IEEE
International Symposium on, pp. 35–45, IEEE, 2012.

[27] X. Zeng, R. Bagrodia, and M. Gerla, “Glomosim: a library
for parallel simulation of large-scale wireless networks,” in
ACM SIGSIM Simulation Digest, vol. 28, pp. 154–161, IEEE
Computer Society, 1998.

[28] P. Xie, Z. Zhou, Z. Peng, H. Yan, T. Hu, J.-H. Cui, Z. Shi,
Y. Fei, and S. Zhou, “Aqua-sim: An ns-2 based simulator for
underwater sensor networks,” in OCEANS 2009, MTS/IEEE
biloxi-marine technology for our future: global and local
challenges, pp. 1–7, IEEE, 2009.

[29] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and
J. Kopena, “Network simulations with the ns-3 simulator,”
SIGCOMM demonstration, vol. 14, no. 14, p. 527, 2008.

[30] T. Issariyakul and E. Hossain, “Introduction to network sim-
ulator 2 (ns2),” in Introduction to Network Simulator NS2,
pp. 21–40, Springer, 2012.

[31] M. Harchol-Balter, Performance Modeling and Design of
Computer Systems: Queueing Theory in Action. Cambridge
University Press, 2013.

[32] L. Kleinrock, “Queueing systems volume 1: Theory,” pp. 101-
103, 404.

[33] “Nginx.” https://nginx.org/en.

[34] S. Chen, S. GalOn, C. Delimitrou, S. Manne, and J. F.
Martı́nez, “Workload characterization of interactive cloud
services on big and small server platforms,” in Workload
Characterization (IISWC), 2017 IEEE International Sympo-
sium on, pp. 125–134, IEEE, 2017.

[35] C. Delimitrou, D. Sanchez, and C. Kozyrakis, “Tarcil: Rec-
onciling Scheduling Speed and Quality in Large Shared
Clusters,” in Proceedings of the Sixth ACM Symposium on
Cloud Computing (SOCC), August 2015.

[36] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and
C. Kozyrakis, “Towards energy proportionality for large-scale
latency-critical workloads,” in Proceedings of the 41st Annual
International Symposium on Computer Architecuture (ISCA),
Minneapolis, MN, 2014.

[37] C. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. F.
Wenisch, J. Mars, L. Tang, and R. G. Dreslinski, “Adrenaline:
Pinpointing and reining in tail queries with quick volt-
age boosting,” in 21st IEEE International Symposium on
High Performance Computer Architecture, HPCA 2015,
Burlingame, CA, USA, February 7-11, 2015, pp. 271–282,
2015.

[38] D. Meisner, B. T. Gold, and T. F. Wenisch, “Powernap:
eliminating server idle power,” in Proceedings of the 14th
international ASPLOS, ASPLOS ’09, 2009.

11

