
An Open-Source Benchmark Suite for Microservices and
Their Hardware-Software Implications for Cloud & Edge Systems

Yu Gan
Cornell University
yg397@cornell.edu

Yanqi Zhang
Cornell University
yz2297@cornell.edu

Dailun Cheng
Cornell University
dc924@cornell.edu

Ankitha Shetty
Cornell University
aas394@cornell.edu

Priyal Rathi
Cornell University
pr348@cornell.edu

Nayan Katarki
Cornell University
nk646@cornell.edu

Ariana Bruno
Cornell University

amb633@cornell.edu

Justin Hu
Cornell University
jh2625@cornell.edu

Brian Ritchken
Cornell University
bjr96@cornell.edu

Brendon Jackson
Cornell University
btj28@cornell.edu

Kelvin Hu
Cornell University
sh2442@cornell.edu

Meghna Pancholi
Cornell University
mp832@cornell.edu

Yuan He
Cornell University
yh772@cornell.edu

Brett Clancy
Cornell University
bjc265@cornell.edu

Chris Colen
Cornell University
cdc99@cornell.edu

Fukang Wen
Cornell University
fw224@cornell.edu

Catherine Leung
Cornell University
chl66@cornell.edu

Siyuan Wang
Cornell University
sw884@cornell.edu

Leon Zaruvinsky
Cornell University
laz37@cornell.edu

Mateo Espinosa
Cornell University
me326@cornell.edu

Rick Lin
Cornell University
cl2545@cornell.edu

Zhongling Liu
Cornell University
zl682@cornell.edu

Jake Padilla
Cornell University
jsp264@cornell.edu

Christina
Delimitrou

Cornell University
delimitrou@cornell.edu

Abstract
Cloud services have recently started undergoing a major
shift from monolithic applications, to graphs of hundreds of
loosely-coupled microservices. Microservices fundamentally
change a lot of assumptions current cloud systems are de-
signed with, and present both opportunities and challenges
when optimizing for quality of service (QoS) and utilization.

In this paper we explore the implications microservices
have across the cloud system stack. We first present Death-
StarBench, a novel, open-source benchmark suite built with
microservices that is representative of large end-to-end ser-
vices, modular and extensible. DeathStarBench includes a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS’19, April 13–17, 2019, Providence, RI, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304013

social network, a media service, an e-commerce site, a bank-
ing system, and IoT applications for coordination control
of UAV swarms. We then use DeathStarBench to study the
architectural characteristics of microservices, their implica-
tions in networking and operating systems, their challenges
with respect to cluster management, and their trade-offs in
terms of application design and programming frameworks.
Finally, we explore the tail at scale effects of microservices in
real deployments with hundreds of users, and highlight the
increased pressure they put on performance predictability.

CCS Concepts • Computer systems organization →
Cloud computing; • Software and its engineering →
n-tier architectures; Cloud computing.

Keywords cloud computing, datacenters, microservices,
cluster management, serverless, acceleration, fpga, QoS
ACM Reference Format:
Yu Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou. 2019. An Open-Source
Benchmark Suite for Microservices and Their Hardware-Software
Implications for Cloud & Edge Systems. In Proceedings of 2019
Architectural Support for Programming Languages and Operating
Systems (ASPLOS’19). ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3297858.3304013

https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013
https://doi.org/10.1145/3297858.3304013

1 Introduction
Large-scale datacenters host an increasing number of pop-
ular online cloud services that span all aspects of human
endeavor. Many of these applications are interactive, latency-
critical services that must meet strict performance (through-
put and tail latency), and availability constraints, while also
handling frequent software updates [21, 28–34, 36, 44, 51, 61,
62, 65]. The effort to satisfy these often contradicting require-
ments has pushed datacenter applications on the verge of
a major design shift, from complex monolithic services that
encompass the entire application functionality in a single
binary, to graphs with tens or hundreds of single-purpose,
loosely-coupledmicroservices. This shift is becoming increas-
ingly pervasive with large cloud providers, such as Amazon,
Twitter, Netflix, Apple, and EBay having already adopted
the microservices application model [6, 18, 19], and Net-
flix reporting more than 200 unique microservices in their
ecosystem, as of the end of 2016 [18, 19].

MicroservicesMonolith

Figure 1. Differences in the de-
ployment of monoliths and mi-
croservices.

The increasing pop-
ularity of microser-
vices is justified by
several reasons. First,
they promote com-
posable software de-
sign, simplifying and
accelerating develop-
ment, with each mi-
croservice being re-
sponsible for a small
subset of the appli-
cation’s functionality.
The richer the func-
tionality of cloud ser-

vices becomes, the more the modular design of microservices
helps manage system complexity. They similarly facilitate
deploying, scaling, and updating individual microservices
independently, avoiding long development cycles, and im-
proving elasticity. Fig. 1 shows the deployment differences
between a traditional monolithic service, and an application
built with microservices. While the entire monolith is scaled
out on multiple servers, microservices allow individual com-
ponents of the end-to-end application to be elastically scaled,
with microservices of complementary resources bin-packed
on the same physical server. Even though modularity in
cloud services was already part of the Service-Oriented Ar-
chitecture (SOA) design approach [77], the fine granularity
of microservices, and their independent deployment create
hardware and software challenges different from those in
traditional SOA workloads.

Second, microservices enable programming language and
framework heterogeneity, with each tier developed in the
most suitable language, only requiring a common API for mi-
croservices to communicate with each other; typically over

remote procedure calls (RPC) [1, 7, 9] or a RESTful API. In
contrast,monoliths limit the languages used for development,
and make frequent updates cumbersome and error-prone.
Finally, microservices simplify correctness and perfor-

mance debugging, as bugs can be isolated in specific tiers,
unlike monoliths, where resolving bugs often involves trou-
bleshooting the entire service. This makes them additionally
applicable to internet-of-things (IoT) applications, that often
host mission-critical computation, which puts more pressure
on correctness verification [40, 43].

Despite their advantages, microservices represent a signif-
icant departure from the way cloud services are traditionally
designed, and have broad implications ranging from cloud
management and programming frameworks, to operating
systems and datacenter hardware design.
In this paper we explore the implications microservices

have across the cloud system stack, from hardware all the
way to application design, using a suite of new end-to-end
and representative applications built with tens of microser-
vices each. The DeathStarBench suite 1 includes six end-to-
end services that cover a wide spectrum of popular cloud
and edge services: a social network, a media service (movie
reviewing, renting, streaming), an e-commerce site, a secure
banking system, and Swarm; an IoT service for coordination
control of drone swarms, with and without a cloud backend.

5. Tail at Scale Implications

2. OS/Network Implications

1. Hardware Implications

4. Application/Programming

Framework Implications

3. Cluster Management Implications

Figure 2. Exploring the implica-
tions of microservices across the
system stack.

Each service includes
tens of microservices
in different languages
and programmingmod-
els, including node.js,
Python, C/C++, Java,
Javascript, Scala, and
Go, and leverages open-
source applications,
such as NGINX [13],
memcached [39],Mon-
goDB [12], Cylon [5],
and Xapian [51]. To create the end-to-end services, we built
custom RPC and RESTful APIs using popular open-source
frameworks like Apache Thrift [1], and gRPC [9]. Finally,
to track how user requests progress through microservices,
we have developed a lightweight and transparent to the
user distributed tracing system, similar to Dapper [76] and
Zipkin [17] that tracks requests at RPC granularity, asso-
ciates RPCs belonging to the same end-to-end request, and
records traces in a centralized database. We study both traffic
generated by real users of the services, and synthetic loads
generated by open-loop workload generators.

We use these services to study the implications ofmicroser-
vices spanning the system stack, as seen in Fig. 2. First, we
quantify how effective current datacenter architectures are at

1Named after the DeathStar graphs that visualize dependencies between
microservices [18, 19].

running microservices, as well as how datacenter hardware
needs to change to better accommodate their performance
and resource requirements (Section 4). This includes ana-
lyzing the cycle breakdown in modern servers, examining
whether big or small cores are preferable [25, 35, 41, 42, 46–
48], determining the pressure microservices put on instruc-
tion caches [37, 52], and exploring the potential they have
for hardware acceleration [24, 27, 38, 49, 71]. We show that
despite the small amount of computation per microservice,
the latency requirements of each individual tier are much
stricter than for typical applications, putting more pressure
on predictably high single-thread performance.

5.3%

94.7%

NGINX (Lat=1293usec)

19.8%

80.2%

memcached (Lat=186usec)

13.6%

86.4%

MongoDB (Lat=383usec)

36.3%

63.7%

Social Network (Lat=3827usec)

Figure 3. Network (red) vs. appli-
cation processing (green) for mono-
liths and microservices.

Second, we quan-
tify the networking
and operating sys-
tem implications of
microservices. Specif-
icallywe show that,
similarly to tradi-
tional cloud appli-
cations, microser-
vices spend a large
fraction of time
in the kernel. Un-
like monolithic ser-
vices though, mi-
croservices spend
much more time sending and processing network requests
over RPCs or other REST APIs. Fig. 3 shows the breakdown of
execution time to network (red) and application processing
(green) for three monolithic services (NGINX, memcached,
MongoDB) and the end-to-end Social Network application.
While for the single-tier services only a small amount of time
goes towards network processing, when using microservices,
this time increases to 36.3% of total execution time, causing
the system’s resource bottlenecks to change drastically. In
Section 5 we show that offloading RPC processing to an FPGA
tightly-coupled with the host server, can improve network
performance by 10-60×.

Third, microservices significantly complicate cluster man-
agement. Even though the cluster manager can scale out indi-
vidual microservices on-demand instead of the entire mono-
lith, dependencies between microservices introduce back-
pressure effects and cascading QoS violations that quickly
propagate through the system, making performance unpre-
dictable. Existing cluster managers that optimize for perfor-
mance and/or utilization [29, 32, 33, 36, 45, 60–62, 64, 66–
68, 73, 80, 84] are not expressive enough to account for the
impact each pair-wise dependency has on end-to-end per-
formance. In Section 6, we show that mismanaging even a
single such dependency dramatically hurts tail latency, e.g.,
by 10.4× for the Social Network, and requires long periods
for the system to recover, compared to the corresponding

monolithic service. We also show that traditional autoscal-
ing mechanisms, present in many cloud infrastructures, fall
short of addressing QoS violations caused by dependencies
between microservices.
Fourth, in Section 7, we identify microservices creating

bottlenecks in the end-to-end service’s critical path, quantify
the performance trade-offs between RPC and RESTful APIs,
and explore the performance and cost implications of run-
ning microservices on serverless programming frameworks.
Finally, given that performance issues in the cloud often

only emerge at large scale [28], in Section 8 we use real
application deployments with hundreds of users to show
that tail-at-scale effects become more pronounced in mi-
croservices compared to monolithic applications, as a single
poorly-configured microservice, or slow server can degrade
end-to-end latency by several orders of magnitude.

As microservices continue to evolve, it is essential for data-
center hardware, operating and networking systems, cluster
managers, and programming frameworks to also evolve with
them, to ensure that their prevalence does not come at a per-
formance and/or efficiency loss. DeathStarBench is currently
used in several academic and industrial institutions with
applications in serverless compute, hardware acceleration,
and runtime management. We hope that open-sourcing it
to a wider audience will encourage more research in this
emerging field.

2 Related Work
Cloud applications have attracted a lot of attention over
the past decade, with several benchmark suites being re-
leased both from academia and industry [37, 44, 51, 81, 88].
Cloudsuite for example, includes both batch and interactive
services, such as memcached, and has been used to study the
architectural implications of cloud benchmarks [37]. Simi-
larly, TailBench aggregates a set of interactive benchmarks,
from web servers and databases to speech recognition and
machine translation systems and proposes a new method-
ology to analyze their performance [51]. Sirius also focuses
on intelligent personal assistant workloads, such as voice to
text translation, and has been used to study the acceleration
potential for interactive ML applications [44].

A limitation of these benchmark suites is that they focus
on single-tier applications, or at most services with two or
three tiers, which drastically deviates from the way cloud
services are deployed today. For example, even applications
like websearch, which is a classic multi-tier workload, are
configured as independent leaf nodes, which does not capture
correlations across tiers. As we show in Sections 4-7 studying
the effects of microservices using existing benchmarks leads
to fundamentally different conclusions altogether.
The emergence of microservices has prompted recent

work to study their characteristics and requirements [55, 78,
79, 86]. µSuite for example quantifies the system call, context

Service Total New Comm. LoCs for RPC/REST Unique Per-language LoC breakdown
LoCs Protocol Handwritten Autogen Microservices (end-to-end service)

Social
15,198 RPC 9,286 52,863 36

34% C, 23% C++, 18% Java, 7% node.js,
Network 6% Python, 5% Scala, 3% PHP, 2% Javascript, 2% Go
Movie

12,155 RPC 9,853 48,001 38
30% C, 21% C++, 20% Java, 10% PHP,

Reviewing 8% Scala, 5% node.js, 3% Python, 3% Javascript
E-commerce

16,194
REST 4,798 -

41
21% Java, 16% C++, 15% C, 14% Go, 10% Javascript,

Website RPC 2,658 12,085 7% node.js, 5% Scala, 4% HTML, 3% Ruby
Banking

13,876 RPC 4,757 31,156 34
29% C, 25% Javascript, 16% Java,

System 16% node.js, 11% C++, 3% Python
Swarm

11,283
REST 2,610 -

25
36% C, 19% Java, 16% Javascript,

Cloud RPC 4,614 21,574 14% node.js, 13% C++, 2% Python
Swarm

13,876 REST 4,757
-

21
29% C, 25% Javascript, 16% Java,

Edge 16% node.js, 11% C++, 3% Python
Table 1. Characteristics and code composition of each end-to-end microservices-based application.

switch, and other OS overheads in microservices [78], while
Ueda et al. [79] show the impact of compute resource allo-
cation, application framework, and container configuration
on the performance and scalability of several microservices.
DeathstarBench differentiates from these studies by focusing
on large-scale applications with tens of uniquemicroservices,
allowing us to study effects that only emerge at large scale,
such as network contention and cascading QoS violations
due to dependencies between tiers, as well as by including
diverse applications that span social networks, media and
e-commerce services, and applications running on swarms
of edge devices.

3 The DeathStarBench Suite
Wefirst describe the suite’s design principles, and then present
the architecture and functionality of each end-to-end service.

3.1 Design Principles
DeathStarBench adheres to the following design principles:

• Representativeness: The suite is built using popular
open-source applications deployed by cloud providers,
such as NGINX [13], memcached [39], MongoDB [12],
RabbitMQ [15], MySQL, Apache http server, ardrone-
autonomy [2, 5], and the Sockshop microservices by
Weave [16]. Most new code corresponds to interfaces
between the services, usingApache Thrift [1], gRPC [9],
or http requests.
• End-to-end operation: Open-source cloud services,
such as memcached, can function as components of a
larger service, but do not capture the impact of inter-
service dependencies on end-to-end performance. Death-
StarBench instead implements the full functionality of
a service from the moment a request is generated at
the client until it reaches the service’s backend and/or
returns to the client.
• Heterogeneity: The software heterogeneity is both
a challenge and opportunity with microservices, as

different languages mean different bottlenecks, syn-
chronization primitives, levels of indirection, and de-
velopment effort. The suite uses applications in low-
and high-level, managed and unmanaged languages in-
cluding C/C++, Java, Javascript, node.js, Python, html,
Ruby, Go, and Scala.
• Modularity: We follow Conway’s Law [4], i.e., the
fact that the software architecture of a service follows
the architecture of the company that built it in the de-
sign of the end-to-end applications, to avoid excessive
two-way communication between any two dependent
microservices, and to ensure they are single-concerned
and loosely-coupled.
• Reconfigurability: Easily updating components of
a larger service is one of the main advantages of mi-
croservices. Our RPC/HTTP API allows swapping out
microservices for alternate versions, with small changes
to existing components.

Table 1 shows the developed LoCs per service, and the
LoCs for the communication protocol; hand-written, and
auto-generated by Thrift, where applicable. The majority of
new code for the Social Network, Media, E-commerce, and
Banking services goes towards the cross-microservice API,
as well as a few microservices for which no open-source
framework existed, e.g., assigning ratings to movies. For
the Swarm application, we show code breakdown for two
versions; one where the majority of computation happens in
a backend cloud (Swarm Cloud), and one where it happens
locally on the edge devices (Swarm Edge). We also show the
number of unique microservices for each application, and the
breakdown per programming language. Unless otherwise
noted, all microservices run in Docker containers.

3.2 Social Network
Scope: The end-to-end service implements a broadcast-style
social network with uni-directional follow relationships.
Functionality: Fig. 4 shows the architecture of the end-to-
end service. Users (client)send requests over http, which
first reach a load balancer, implemented with nginx. Once a

mongoDB

mongoDB

mongoDB

memcached

memcached

memcached

mongoDB

memcached

Social Network

Service

text

video

image

userTag

composePost

postsStorage

writeTimeline

writeGraph

readPost blockedUsers

readTimeline

login

userInfo
mongoDB

memcached

search

index0

index1

indexn

…

uniqueID
ads

recommender

Client nginx

http

http

fastcgi
php-

fpm

Load

Balancer
urlShorten

favorite

followUser

Figure 4. The architecture (microservices dependency graph)
of Social Network.

Client nginx

http

http

fastcgi
php-

fpm

Load

Balancer

photos

videos

rent

movie

ads
mongoDB

mongoDB

memcached

plot

mongoDB

memcached

video

streaming

(nginx-hls)

NFS

userReview

composePage

reviewStorage memcached

thumbnail

rating

movieReview

uniqueID

movieID

login

text/rating

userInfo
mongoDB

memcached

cast

composeReview

recommender

Media Service

search

index0

index1

indexn

MovieDB

(MySQL)

…

Figure 5. The architecture of theMedia Service for reviewing,
renting, and streaming movies.

specific webserver is selected, also in nginx, the latter uses
a php-fpm module to talk to the microservices responsible
for composing and displaying posts, as well as microservices
for advertisements, search engines, etc. All messages down-
stream of php-fpm are Apache Thrift RPCs [1]. Users can
create posts embedded with text, media, links, and tags to
other users. Their posts are then broadcasted to all their
followers. Users can also read, favorite, and repost posts, as
well as reply publicly, or send a direct message to another
user. The application also includes machine learning plugins,
such as ads and user recommender engines [22, 23, 53, 83],
a search service using Xapian [51], and microservices to
record and display user statistics, e.g., number of followers,
and to allow users to follow, unfollow, or block other ac-
counts. The service’s backend uses memcached for caching,
and MongoDB for persistent storage for posts, profiles, media,
and recommendations. Finally, the service is instrumented
with a distributed tracing system (Sec. 3.7), which records
the latency of each network request and per-microservice
processing; traces are recorded in a centralized database.
The service is broadly deployed at our institution, currently
servicing several hundred users. We use this deployment to
quantify the tail at scale effects of microservices in Section 8.

3.3 Media Service
Scope: The application implements an end-to-end service
for browsing movie information, as well as reviewing, rating,
renting, and streaming movies [18, 19].
Functionality: Fig. 5 shows the architecture of the end-to-
end service. As with the social network, a client request hits
the load balancer, which distributes requests among multiple
nginx webservers. Users can search and browse information
about movies, including their plot, photos, videos, cast, and
review information, as well as insert new reviews in the sys-
tem for a specific movie by logging into their account. Users
can also select to rent a movie, which involves a payment
authentication module to verify that the user has enough

funds, and a video streamingmodule using nginx-hls, a pro-
duction nginx module for HTTP live streaming. The actual
movie files are stored in NFS, to avoid the latency and com-
plexity of accessing chunked records from non-relational
databases, while movie reviews are kept in memcached and
MongoDB instances. Movie information is maintained in a
sharded and replicated MySQL database. The application
also includes movie and advertisement recommenders, as
well as a couple auxiliary services for maintenance and ser-
vice discovery, which are not shown in the figure. We are
similarly deployingMedia Service as a hosting site for project
demos at Cornell, which members of the community can
browse and review.

3.4 E-Commerce Service
Scope: The service implements an e-commerce site for cloth-
ing. The design draws inspiration, and uses several compo-
nents of the open-source Sockshop application [16].
Functionality: Fig. 6 shows the architecture of the end-
to-end service. The application front-end in this case is a
node.js service. Clients can use the service to browse the
inventory using catalogue, a Go microservice that mines
the back-end memcached and MongoDB instances holding
information about products. Users can also place orders
(Go) by adding items to their cart (Java). After they log
in (Go) to their account, they can select shipping options
(Java), process their payment (Go), and obtain an invoice
(Java) for their order. Orders are serialized and commit-
ted using QueueMaster (Go). Finally, the service includes
a recommender engine for suggested products, and microser-
vices for creating an item wishlist (Java), and displaying
current discounts.

3.5 Banking System
Scope: The service implements a secure banking system,
which users leverage to process payments, request loans, or
balance their credit card.

E-commerce

Service

front-end

(node.js)
http

memcached

orders

search

index0

index1

indexn

…

recommender

media

discounts

catalogue

wishlist

cart

accountInfo

mongoDB

mongoDB

mongoDB

shipping

mongoDB

queueMaster orderQueue

mongoDB

mongoDB

memcached

mongoDB

payment

authorization

transactionID

invoicing

login

ads
Client

http
Load

Balancer

socialNet

memcached

Figure 6. The architecture of the E-commerce service.

Banking

System

search

index0

index1

indexn

…

ads

authentication

payments ACL

customerInfo

customerActivity

transactionPosting

investment

Account

deposit

Account

personal

Lending
business

Lending

creditCard

mortgages
userPreferences

contact

BankInfoDB

offerBanners OfferDB

wealthMgmt

openCreditCard

openAccount

wealthMgmtDB

media

mongoDB

mongoDB

mongoDB

front-end

(node.js)
http

Client

http
Load

Balancer

memcached

memcached

memcached

memcached

mongoDB

Figure 7. The architecture of the Banking end-to-end service.
Client

nginx

http

http

Load Balancer

Controller

TargetDB

OrientationDB

ConstructRoute

All arrows are Thrift RPCs Arrows within a drone are IPCs

Front-

end

Cloud

Edge

Routerwifi

LuminosityDB

SpeedDB

LocationDB

VideoDB

ImageDB

Camera

(image)

Camera

(video)

Location

Obstacle

Avoidance

Log (node.js)

Controller

Speed

Luminosity

Edge

Swarm

StockImageDB

MotionCtr

Image

recognition

Orientation

Controller

Front-

end

Cloud

OrientationDB

LuminosityDB LocationDB

SpeedDB

ConstructRoute

All arrows after nginx are Thrift RPCs Arrows within drones are IPCs

wifi

StockImageDB

Obstacle

Avoidance

ImageDBVideoDB

TargetDB

Image

recognition

MotionControl

Client

nginx

http

http

Load Balancer

Camera

(image)

Camera

(video)

Location

Controller

Orientation

Speed

Luminosity Log.js

Edge

Router

Edge

Swarm

Figure 8. The Swam service running (a) on edge devices, and (b) on the cloud. (c) Local drone swarm executing the service.

Functionality: Users interface with a node.js front-end,
similar to the one in the E-commerce service to login to their
account, search information about the bank, or contact a
representative. Once logged in, a user can process a payment
from their account, pay their credit card or request a new one,
browse information about loans or request one, and obtain
information about wealth management options. Most mi-
croservices are written in Java and Javascript. The back-end
databases consist of in-memory memcached, and persistent
MongoDB instances. The service also has a relational database
(BankInfoDB) that includes information about the bank, its
services, and representatives.

3.6 Swarm Coordination
Scope: Finally, we explore a different execution environ-
ment for microservices, where applications run both on the
cloud and on edge devices. The service coordinates the rout-
ing of a swarm of programmable drones, which perform
image recognition and obstacle avoidance.
Functionality:We explore two version of this service. In the
first (Fig. 8a), the majority of the computation happens on the
drones, including the motion planning, image recognition,
and obstacle avoidance, with the cloud only constructing

the initial route per-drone (Java service ConstructRoute),
and holding persistent copies of sensor data. This architec-
ture avoids the high network latency between cloud and
edge, however, it is limited by the on-board resources. The
Controller and MotionController are implemented in
Javascript, while ImageRecognition is using jimp, a node.js
library for image recognition [11], and ObstacleAvoidance
in C++. Services on the drones run natively, and communi-
cate with each other over IPC, while the cloud and drones
communicate over http to avoid installing the heavy depen-
dencies of Thrift on the edge devices.

In the second version (Fig. 8b), the cloud is responsible for
most of the computation. It performs motion control, image
recognition, and obstacle avoidance for all drones, using the
ardrone-autonomy [2], and Cylon [5] libraries, in OpenCV
and Javascript respectively. The edge devices are only re-
sponsible for collecting sensor data and transmitting them
to the cloud, as well as recording some diagnostics using
a local node.js logging service. In this case, almost every
action suffers the cloud-edge network latency, although ser-
vices benefit from the additional cloud resources. We use
24 programmable Parrot AR2.0 drones (a subset is seen in
Fig. 8c), together with a backend cluster of 20 two-socket,

0 5 10 15 20 25 30
103

104

105

Edge-Image Recogn.

0 5 10 15 20 25 30
102

103

104

105

Edge-Obstance Avoid.

0 20 40 60 80
102

103

104

105

Cloud-Image Recogn.

0 10 20 30 40 50
102

103

104

105

Cloud-Obstacle Avoid.

T
a

il
L

a
te

n
c
y
 (

m
s
e

c
)

Queries per Second (QPS)

Figure 9. Throughput-tail latency for the Swarm service
when execution happens at the edge versus the cloud.

40-core servers. Drones communicate with each other and
the cluster over a wireless router.

3.7 Methodological Challenges of Microservices
A major challenge with microservices is that one cannot
simply rely on the client to report performance, as with tra-
ditional client-server applications. Resolving performance
issues requires determining which microservice(s) is the cul-
prit of a QoS violation, which typically happens through
distributed tracing. We developed and deployed a distributed
tracing system that records per-microservice latencies at
RPC granularity using the Thrift timing interface. RPCs or
REST requests are timestamped upon arrival and departure
from each microservice by the tracing module, and data is
accumulated by the Trace Collector, implemented simi-
larly to the Zipkin Collector [17], and stored in a centralized
Cassandra database. We additionally track the time spent
processing network requests, as opposed to application com-
putation using a similar methodology to [58]. We verify that
the overhead from tracing is negligible, less than 0.1% on
end-to-end latency in all cases, which is tolerable for such
systems [26, 72, 76].

3.8 Provisioning & Query Diversity
Before characterizing the architectural behavior of microser-
vices, we provision the end-to-end applications to ensure
that microservices are used in a balanced way, and that no
single microservice introduces early bottlenecks due to re-
source saturation. To do so, we start with a fair resource
allocation for all microservices of an end-to-end workload,
and upsize saturated microservices until all tiers saturate at
about the same load. The ratio of resources between tiers
varies significantly across end-to-end services, highlighting
the need for application-aware resource management.

Different query types also achieve different performance
in each service. For example, composePost requests in the
Social Network vary in the media they embed in a message,
ranging from text-only messages, to posts including image
and video files (we keep videos within a few MBs, similar
to the allowable video sizes in production social networks
like Twitter). Reposting a post incurs the longest latency
across query types for Social Network, as it must first read an

Front-end Bad Speculation Back-end Retiring

n
g
in

x
te

xt
im

a
g
e

u
n
iq

u
e
ID

u
se

rT
a
g

u
rl
S

h
o
rt
e
n

vi
d
e
o

re
co

m
m

e
n
d

lo
g
in

re
a
d
P

o
st

w
ri
te

G
ra

p
h

m
e
m

ca
ch

e
d

m
o
n
g
o
d
b

E
n
d
-t
o
-E

n
d

M
o
n
o
lit

h

0

20

40

60

80

100

C
y
c
le

 B
re

a
k
d

o
w

n
 (

%
)

0.0

0.2

0.4

0.6

0.8

1.0

IP
C

Social Network

fro
nt

en
d
lo
gi
n

or
de

rs

se
ar

chca
rt

w
is
hl
is
t

ca
ta

lo
gu

e

re
co

m
m

en
d

sh
ip
pi
ng

pa
ym

en
t

in
vo

ic
e

qM
as

te
r

m
em

ca
ch

ed

m
on

go
db

End
-to

-E
nd

M
on

ol
ith

0

20

40

60

80

100

C
y
c
le

 B
re

a
k
d

o
w

n
 (

%
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IP
C

Ecommerce

Figure 10. Cycle breakdown and IPC for the Social Network
and E-commerce services.

existing post, prepend to it, and then propagate the message
across the user’s followers’ timelines.

In E-commerce, on the other hand, placing an order, which
includes adding an item to the cart, logging in to the account,
confirming payment, and selecting shipping, takes 1-2 orders
of magnitude longer than browsing the eshop’s catalogue.
In reality, placing an order requires interaction with the end
user; in our case we automate the client’s decisions so they in-
cur zero delay, making latency server-dominated. The trends
across query types are similar for the Media and Banking
services, with processing payments, either to rent a movie,
or to perform a transaction in a bank account, dominating
latency and defining each service’s saturation point.
Finally, in Fig. 9, we compare the performance of the

IoT application when computation happens at the edge ver-
sus the cloud. Since drones have to communicate with a
wireless router over a distance of several tens of meters,
latencies are significantly higher than for the cloud-only
services. When processing happens in the cloud, latency
at low load is higher, penalized by the long network delay.
As load increases however, edge devices quickly become
oversubscribed due to the limited on-board resources, with
processing on the cloud achieving 7.8x higher throughput
for the same tail latency, or 20x lower latency for the same
throughput. Obstacle avoidance shows a different trade-off,
since it is less compute-intensive, and more latency-critical.
Offloading obstacle avoidance to the cloud at low load can
have catastrophic consequences if route adjustment is de-
layed, which highlights the importance of latency-aware
resource management between cloud and edge, especially
for safety-critical computation.

4 Architectural Implications
Methodology: We first evaluate the end-to-end services
on a local cluster with 20 two-socket 40-core Intel Xeon
servers (E2699-v4 and E5-2660 v3) with 128-256GB memory
each, connected to a 10GBps ToR switch with 10Gbe NICs.
All servers are running Ubuntu 16.04, and unless otherwise
noted power management and turbo boosting are turned off.
Cycles breakdown and IPC: We use Intel vTune [10] to
break down the cycles, and identify bottlenecks. Fig. 10

ng
in
x
te

xt

im
ag

e

un
iq
ue

ID

us
er

Tag

ur
lS

ho
rte

n

vi
de

o

re
co

m
m

en
de

r

lo
gi
n

re
ad

Pos
t

w
rit

eG
ra

ph

m
em

ca
ch

ed

m
on

go
db

End
-to

-E
nd

M
on

ol
ith

0
10
20
30
40
50
60
70
80

L
1
i
M

P
K

I

Social Network

fro
nt

en
d
lo
gi
n

or
de

rs

se
ar

chca
rt

w
is
hl
is
t

ca
ta

lo
gu

e

re
co

m
m

en
d

sh
ip
pi
ng

pa
ym

en
t

in
vo

ic
e

qM
as

te
r

m
em

ca
ch

ed

m
on

go
db

End
-to

-E
nd

M
on

ol
ith

0

10

20

30

40

50

60

70

L
1
i
M

P
K

I

E-Commerce

Figure 11. L1-i misses in Social Network and E-commerce.

shows the IPC and cycles for each microservice in the Social
Network and E-commerce services. We omit the figures for
the other services, however the observations are similar.

Across all services a large fraction of cycles, often the ma-
jority, is spent in the processor front-end. Front-end stalls
occur for several reasons, including long memory accesses
and i-cache misses. This is consistent with studies on tradi-
tional cloud applications [37, 50], although to a lesser extent
for microservices than for monolithic services (memcached,
mongodb), given their smaller code footprint. The majority
of front-end stalls are due to fetch, while branch mispredic-
tions account for a smaller fraction of stalls for microser-
vices than for other interactive applications, either cloud or
IoT [37, 88]. Only a small fraction of total cycles goes towards
committing instructions (21% on average for Social Network),
denoting that current systems are poorly provisioned for
microservices-based applications.

E-commerce includes a few microservices that go against
this trend, with high IPC and high percentage of retired in-
structions, such as Search. Search (xapian [51]) is already op-
timized for memory locality, and has a relatively small code-
base, which explains the fewer front-end stalls. The same
applies for simple microservices, such as the wishlist for
which i-cache misses are practically negligible. E-commerce
also includes a recommender engine, whose IPC is extremely
low; this is again in agreement with studies on the archi-
tectural behavior of ML applications [44]. The challenge
with microservices is that although individual application
components may be well understood, the structure of the
end-to-end dependency graph defines how individual ser-
vices affect the overall performance. For both services, we
also show the cycles breakdown and IPC for corresponding
applications with the same end-to-end functionality from
the user’s perspective, but built as monoliths. In both cases,
monoliths are developed in Java, and include all application
functionality, except for the backend databases (in memcached

and MongoDB), in a single binary. The cycles breakdown is
not drastically different for monoliths compared to microser-
vices, although they experience slightly higher percentages
of committed instructions, due to reduced front-end stalls,
as they are less likely to wait for network requests to com-
plete. IPC is also similar to microservices, and consistent with
previous studies on cloud services [37, 51].

0 100 200 300 400

QPS

1000

1200

1400

1600

1800

2000

2200

2400

F
re

q
u

e
n

c
y
 (

M
H

z
)

NGINX

0 100 200 300 400

QPS

Memcached

0 100 200 300 400

QPS

MongoDB

0 100 200 300 400

QPS

Xapian

0 100 200 300 400

QPS

Recommender

0 100 200 300 400

QPS

1000

1200

1400

1600

1800

2000

2200

2400

F
re

q
u

e
n

c
y
 (

M
H

z
)

Social Network

0 100 200 300 400

QPS

Media Service

0 100 200 300 400

QPS

E-commerce

0 100 200 300 400

QPS

Banking System

0 20 40 60 80

QPS

Swarm-Cloud

100 101 102
Tail Latency norm QoS (x1)Figure 12. Tail latency with increa-

sing load and decreasing frequency
(RAPL) for traditional monolithic cloud applications, and
the five end-to-end DeathStarBench services. Lighter colors
(yellow) denote QoS violations.

I-cache pressure: Prior work has characterized the high
pressure cloud applications put on the instruction caches [37,
52]. Since microservices decompose what would be one large
binary to many small, loosely-connected services, we exam-
ine whether previous results on i-cache pressure still hold.
Fig. 11 shows the MPKI of each microservice for the Social
Network and E-commerce applications. We also include the
back-end caching and database layers, as well as the corre-
sponding L1i MPKI for the monolithic implementations.
First, the i-cache pressure of nginx, memcached, MongoDB,

and especially the monoliths remains high, consistent with
prior work [37, 52, 88]. The i-cache pressure of the remaining
microservices though is considerably lower, especially for E-
commerce, an expected observation given the microservices’
small code footprints. Since node.js applications outside
the context of microservices do not have low i-cache miss
rates [88], we conclude that it is the simplicity of microser-
vices which results in better i-cache locality. Most L1i misses,
especially in the Social Network happen in the kernel, and
are caused by Thrift. We also examined the LLC and D-TLB
misses, and found them considerably lower than for tradi-
tional cloud applications, which is consistent with the push
for microservices to be mostly stateless.
Brawny vs. wimpy cores: There has been a lot of work on
whether small servers can replace high-end platforms in the
cloud [25, 46–48]. Despite the power benefits of simple cores,
interactive services still achieve better latency in servers
that optimize for single-thread performance. Microservices
offer an appealing target for simple cores, given the small
amount of computation per microservice. We evaluate low-
power machines in two ways. First, we use RAPL on our local
cluster to reduce the frequency at which all microservices
run. Fig. 12 (top row) shows the change in tail latency as load
increases, and as the operating frequency decreases for five
popular, open-source single-tier interactive services: nginx,

memcached, MongoDB, Xapian, and Recommender. We compare
these against the five end-to-end services (bottom row).

As expected, most interactive services are sensitive to fre-
quency scaling. Among the monolithic workloads, MongoDB
is the only one that can tolerate almost minimum frequency
at maximum load, due to it being I/O-bound. The other
four single-tier services experience increased latency as fre-
quency drops, with Xapian being the most sensitive [51],
followed by nginx, and memcached. However, looking at the
same study for the microservices reveals that, despite the
higher tail latency of the end-to-end service, microservices
are much more sensitive to poor single-thread performance
than traditional cloud applications. Although initially coun-
terintuitive, this result is not surprising, given the fact that
each individual microservice must meet much stricter tail
latency constraints compared to an end-to-end monolith,
putting more pressure on performance predictability. Out
of the five end-to-end services (we omit Swarm-Edge, since
compute happens on the edge devices), the Social Network
and E-commerce are most sensitive to low frequency, while
the Swarm service is the least sensitive, primarily because
it is bound by the cloud-edge communication latency, as
opposed to compute speed.

Social Net

Ecommerce

Banking

Movie Service

Swarm-Cloud

0 200 400 600 800 1000
QPS

100
101
102
103

T
a

il
L

a
te

n
c
y
 Q

o
S

 (
m

s
e

c
)

Xeon

Xeon@1.8

ThunderX

Figure 13. Throughput-
tail latency on an Intel
Xeon and a Cavium Thun-
derX server for all end-to-
end services.

Apart from frequency scal-
ing, there are platforms
designed with low-power
cores to begin with. We also
evaluate the end-to-end ser-
vices on two Cavium Thun-
derX boards (2 sockets, 48
in-order cores per socket,
1.8GHz each, and a 16-way
shared 16MB LLC) [25]. The
boards are connected on
the same ToR switch as the
rest of our cluster, and their
memory and network sub-
systems are the same as the other servers. Fig. 13 shows the
throughput at the saturation point for each application on
the two platforms. We also show the performance of the
Xeon server when equalizing its frequency to the Cavium
board. Although ThunderX is able to meet the end-to-end
QoS target at low load, all five applications saturate much
earlier than on the high-end server. This is especially the
case in Social Network, and Media Service because of their
stricter latency requirements, and E-commerce, because it
is more compute intensive. As with power management,
Swarm does not suffer as much, because it is network-bound.
Running the Xeon server at 1.8GHz, although worse than its
performance at the nominal frequency, still outperforms the
Cavium SoC considerably. Even though low power machines
degrade performance in this case, they can still be used for
microservices off the critical path, or those insensitive to
frequency scaling.

5 OS & Networking Implications
We now examine the role of operating systems and network-
ing under the new microservices model.
OS vs. user-level breakdown: Fig. 14 shows the break-
down of cycles (C) and instructions (I) to kernel, user, and
libraries for each of the end-to-end services. For all applica-
tions, and especially Social Network andMedia Service, a large
fraction of execution is at kernel mode, skewed by the use of
memcached for in-memory caching [57], and the high network
traffic, with an almost equal fraction going towards libraries
like libc, libgcc, libstdc, and libpthread. The breakdown is less
skewed for E-commerce and Banking, whose microservices
are more computationally-intensive, and spend more time in
user mode, while Swarm, both in its cloud and especially edge
configurations, spends almost half of the time in libraries.

C I C I C I C I C I C I
0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 (
%

)

OS User Libs Other

Social
Net

Media
Service

Ecomm.
Banking

Swarm
Cloud

Swarm
Edge

Figure 14. Time in ker-
nel mode, user mode, and
libraries for each service.

The large number of cy-
cles in the kernel is not
surprising, given that appli-
cations like memcached and
MongoDB spend most of their
execution time in the kernel
to handle interrupts, pro-
cess TCP packets, and acti-
vate and schedule idling in-
teractive services [57]. The
large number of library cy-

cles is also intuitive, given that microservices optimize for
speed of development, and hence leverage a lot of exist-
ing libraries, as opposed to reimplementing the function-
ality from scratch. The overhead of general-purpose Linux
has motivated a lot of simpler specialized kernels, such as
Unikernel [63], which trade off compatibility for improved
performance. Similar OS designs are also applicable to single-
concerned microservices.
Computation:communication ratio: Fig. 15a shows the
time spent processing network requests compared to applica-
tion computation at low and high load for the microservices
in Social Network. Fig. 15b shows the fraction of tail latency
spent processing RPC requests for the remaining end-to-end
services. At low load, RPC processing corresponds to 5-75%
of execution time across the Social Network’s microservices,
and 18% of end-to-end tail latency. This is caused by several
microservices being too simple to involve considerable pro-
cessing. In comparison, network processing accounts for a
lower fraction of latency in E-commerce and Banking, primar-
ily because their microservices are more computationally
intensive. Finally, network processing accounts for over 30%
of tail latency in both Swarm settings, even at low load.
At high load, network processing becomes a much more

pronounced factor of tail latency for all end-to-end services,
except for E-commerce, and Banking, as long queues build
up in the NICs. This has a significant impact on tail latency,

n
g
in

x
te

xt
im

a
g
e

u
n
iq

u
e
ID

u
se

rT
a
g

u
rl
S

h
o
rt
e
n

vi
d
e
o

re
co

m
m

e
n
d

lo
g
in

re
a
d
P

o
st

w
ri
te

G
ra

p
h

m
e
m

ca
ch

e
d

m
o
n
g
o
d
b

E
n
d
-t
o
-E

n
d

M
o
n
o
lit

h

0

2

4

6

8

10

12

T
a

il
L

a
te

n
c
y
 (

m
s
)

Social Network

Application proc

TCP proc (RPCs)

S
o
ci

a
l

M
e
d
ia

E
co

m
m

e
rc

e

B
a
n
ki

n
g

S
w

a
rm

S
w

a
rm

0

10

20

30

40

50

60

70

N
e

tw
o

rk
 P

ro
c
e

s
s
in

g
 (

%
)

Low Load

High Load

N
e
tw

o
rk

S
e
rv

ic
e

C
lo

u
d

E
d
g
e

Figure 15. Time in application vs network processing for (a)
microservices in Social Network, and (b) the other services.

QPI

NIC

CPU

DRAM

PCIe Gen3

DRAM

QSFP

QSFP

Q
S
F
P

10Gbps

10Gbps

Virtex7

DRAM

CPU
PCIe Gen3

S
o
ci

a
l

M
e
d
ia

E
co

m
m

e
rc

e

B
a
n
ki

n
g

S
w

a
rm

S
w

a
rm

10-1

100

101

102

S
p

e
e

d
u

p
 o

v
e

r
N

a
ti
v
e

 (
x
1

) Network Proc. End-to-End Latency
N

e
tw

o
rk

S
e
rv

ic
e

C
lo

u
d

E
d
g
e

Figure 16. (a) Overview of the FPGA configuration for RPC
acceleration, and (b) the performance benefits of acceleration
in terms of network and end-to-end tail latency.

with the Social Network experiencing a 3.2× increase in end-
to-end tail latency. The large impact of network processing
occurs regardless of whether microservices communicate
over RPCs (Social Network, Media Service, Banking), or over
HTTP (E-commerce, Swarm-Edge), although RPCs introduce
considerably lower latencies at low load than HTTP. Finally,
Fig. 15a also shows the time the monolithic Social Network
application spends processing network requests. Both at low,
and especially at high load the difference is dramatic, albeit
justified, since monoliths are deployed as single binaries,
with the majority of the network traffic corresponding to
client-server communication.

Given the prominent role network processing has on tail
latency, we now examine its potential for acceleration.
We use a bump-in-the-wire setup, seen in Fig. 16a, and

similar to the one in [38] to offload the entire TCP stack [54,
69, 70, 74, 75] on a Virtex 7 FPGA using Vivado HLS. The
FPGA is placed between the NIC and the top of rack switch
(ToR), and is connected to both with matching transceivers,
acting as a filter on the network. We maintain the PCIe con-
nection between the host and the FPGA for accelerating other
services, such as the machine learning models in the recom-
mender engines, during periods of low network load. Fig. 16b
shows the speedup from acceleration on network processing
latency alone, and on the end-to-end latency of each of the
services. Network processing latency improves by 10 − 68x
over native TCP, while end-to-end tail latency improves by
43% and up to 2.2x . For interactive, latency-critical services,
where even a small improvement in tail latency is significant,
network acceleration provides a major boost in performance.

memcached

read	<k,v>

memcached

read	<k,v>

A.	NGINX	Saturation

B.	Memcached Backpressuring NGINX

NGINX

NGINX

0 10 20 30 40 50 60
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

T
a
il

L
a
te

n
c
y
 (

m
s
)

NGINX

Memcached

memcached

read	<k,v>

memcached

read	<k,v>

A.	NGINX	Saturation

B.	Memcached Backpressuring NGINX

NGINX

NGINX

0 10 20 30 40 50 60
Time (s)

0

2

4

6

8

10

12

T
a
il

L
a
te

n
c
y
 (

m
s
)

NGINX

Memcached

Figure 17. Example of backpressure between microservices
in a simple, two-tier application. Case A shows a typical
hotspot that autoscalers can easily address, while Case B
shows that a seemingly negligible bottleneck in memcached
can cause the front-end NGINX service to saturate.

6 Cluster Management Implications
Microservices complicate cluster management, because de-
pendencies between tiers can introduce backpessure effects,
leading to system-wide hotspots [56, 59, 82, 85, 87]. Back-
pressure can additionally trick the cluster manager into pe-
nalizing or upsizing a saturated microservice, even though
its saturation is the result of backpressure from another, po-
tentially not-saturated service. Fig. 17 highlights this issue
for a simplified two-tier application consisting of a web-
server (nginx), and an in-memory caching key-value store
(memcached). In caseA, as the client issues read requests, nginx
reaches saturation, causing its latency to increase rapidly,
and long queues to form in its input. This is a straightfor-
ward case, which autoscaling systems can easily tackle by
scaling out nginx, as seen in the figure at t = 14s and t = 35s .

Netflix Twitter

Amazon Social Network

Figure 18. Microservices
graphs for three real produc-
tion cloud providers [6, 18, 19].
We also show these dependen-
cies for Social Network.

Case B on the other
hand, highlights the
challenges of backpres-
sure.When using HTTP1,
requests within a sin-
gle connection are block-
ing, i.e., there can only
be one outstanding re-
quest per connection
across tiers. Therefore,
even though memcached

itself is not saturated,
it causes long queues
of outstanding requests
to form ahead of nginx,
which in turn cause
it to saturate. Current
cluster managers cannot easily address this case, as a
utilization-based autoscaling scheme would scale out nginx,
which is budy waiting and appears saturated. As seen in the
figure, not only does this not solve the problem, but can po-
tentially make it worse, by admitting even more traffic into
the system. Even without the connection blocking in HTTP1,

0 50 100 150 200 250 300

Time (s)

M
ic

ro
s
e
rv

ic
e
s
 I
n
s
ta

n
c
e
s

100

101

102

L
a
te

n
c
y
 i
n
c
re

a
s
e
 (

%
)

Front-end

Back-end

0 50 100 150 200 250 300

Time (s)

M
ic

ro
s
e
rv

ic
e
s
 I
n
s
ta

n
c
e
s

100

101

102

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Front-end

Back-end

Figure 19. Cascading QoS violations in Social Network com-
pared to per-microservice CPU utilization.

backpressure still occurs, as multi-tier applications are not
perfect pipelines where tiers operate entirely independently.
Unfortunately real-world cloud applications are much

more complex than this simple example suggests. Fig. 18
shows the microservices dependency graphs for three ma-
jor cloud service providers, and for one of our applications
(Social Network). The perimeter of the circle (or sphere sur-
face) shows the different microservices, and edges show
dependencies between them. Such dependencies are difficult
for developers or users to describe, and furthermore, they
change frequently, as old microservices are swapped out and
replaced by newer services.

Fig. 19 shows the impact of cascading QoS violations in the
Social Network service. Darker colors show tail latency closer
to nominal operation for a given microservice in Fig. 19a,
and low utilization in Fig. 19b. Brighter colors signify high
per-microservice tail latency and high CPU utilization. Mi-
croservices are ordered based on the service architecture,
from the back-end services at the top, to the front-end at
the bottom. Fig. 19a shows that once the back-end service at
the top experiences high tail latency, the hotspot propagates
to its upstream services, and all the way to the front-end.
Utilization in this case can be misleading. Even though the
saturated back-end services have high utilization in Fig. 19b,
microservices in the middle of the figure also have even
higher utilization, without this translating to QoS violations.
Conversely, there are microservices with relatively low

utilization and degraded performance, for example, due to
waiting on a blocking/synchronous request from another, sat-
urated tier. This highlights the need for cluster managers that
account for the impact dependencies between microservices
have on end-to-end performance when allocating resources.
Finally, the fact that hotspots propagate between tiers

means that once microservices experience a QoS violation,
they need longer to recover than traditional monolithic ap-
plications, even in the presence of autoscaling mechanisms,
which most cloud providers employ. Fig. 20 shows such a
case for Social Network implemented with microservices,
and as a monolith in Java. In both cases the QoS violation
is detected at the same time. However, while the cluster
manager can simply instantiate new copies of the monolith
and rebalance the load, autoscaling takes longer to improve

0 50 100 150 200 250 300

Time (s)

100

101

102

103

T
a

il
L

a
te

n
c
y
 (

m
s
)

Monolith

Microservices

QoS

D
e

te
c
ti
o

n

0 50 100 150 200 250 300

Time (s)

M
ic

ro
s
e
rv

ic
e
s
 I
n
s
ta

n
c
e
s

100

101

102

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Front-end

Back-end

Figure 20. (a) Microservices taking longer than monoliths
to recover from a QoS violation, even (b) in the presence of
autoscaling mechanisms.

performance. This is because, as shown in Fig. 20b, the au-
toscaler simply upsizes the resources of saturated services
- seen by the progressively darker colors of highly-utilized
microservices. However, services with the highest utilization
are not necessarily the culprits of a QoS violation [61], taking
the system much longer to identify the correct source behind
the degraded performance and upsizing it. As a result, by
the time the culprit is identified, long queues have already
built up which take considerable time to drain.

7 Application & Programming Framework
Implications

Latency breakdown per microservice:We first examine
whether the end-to-end services experience imbalance across
tiers, with some microservices being responsible for a dispro-
portionate amount of computation or end-to-end latency, or
being prone to creating hotspots. We examine each service
at low and high load and obtain the per-microservice latency
using our distributed tracing framework, and confirm it with
Intel’s vTune. Both for the Social Network and Media Service
latency at low load is dominated by the front-end (nginx),
while the rest of the microservices are almost evenly dis-
tributed. MongoDB is the only exception, accounting for
8.5% and 10.3% of end-to-end latency respectively.
This picture changes at high load. While the front-end

still contributes considerably to latency, overall performance
is now limited by the back-end databases, and the microser-
vices that manage them, e.g., writeGraph. The Ecommerce and
Banking services experience similar fluctuations across load
levels, and are additionally impacted by the fact that several
of their services are compute intensive, and written in high-
level languages, like node.js and Go. This affects execution
time, with orders, catalogue, and payment accounting for the
majority of end-to-end latency for Ecommerce, and payments

and authentication for Banking. The back-end databases
in this case contribute less to execution time, showing that
the choice of programming language affects how hotspots
evolve in the system. queueMaster also experiences high la-
tency in E-commerce, as it uses synchronization to ensure
that orders are serialized, processed, and committed in order,
which constrains its scalability at high load.

Social Media Ecommerce Banking Swarm

101

102

T
a
il

L
a
te

n
c
y
 (

m
s
)

Network Service System Cloud

Amazon EC2
AWS Lambda (S3)
AWS Lambda (mem)

$28.8

$2.85

$3.93 $24.1

$3.16

$5.02

$37.6

$4.56

$6.87

$21.6

$2.19

$4.02

$14.8

$2.08

$3.65

0 50 100 150 200 250 300
Time (s)

0

5

10

15

20

25

T
a
il

L
a
te

n
c
y
 (

m
s
) EC2

Lambda

0

100

200

300

400

500

In
p
u
t
L
o
a
d
 (

Q
P

S
)

Figure 21. Performance and cost for the five services on
Amazon EC2 and AWS Lambda (top). Tail latency for Social
Network under a diurnal load pattern (bottom).

Finally, the Swarm coordination service experiences dif-
ferent trade-offs when running on the cloud compared to
the edge devices. While imageRecognition dominates latency
regardless of where the microservice is running, its impact
on tail latency is more severe when running at the resource-
limited edge, to the point of preventing the motion controller
from engaging, due to insufficient resources.
This shows that not only bottlenecks vary across end-to-

end services, despite individualmicroservices being same/sim-
ilar, but that these bottlenecks additionally change with load,
putting more pressure on dynamic and agile management.
Serverless frameworks: Microservices are often used in
the context of serverless programming frameworks, i.e., frame-
works where the application and data are managed by the
cloud provider, and the user simply launches short-lived
“functions”, and is charged on a per-request basis [3]. Server-
less is well-suited for applications with intermittent activity,
where maintaining long-running instances is cost inefficient.
Serverless additionally targets embarrassingly parallel ser-
vices, which benefit from a massive amount of resources
for a brief period of time. At the same time, serverless adds
an extra level of indirection, as applications have to be in-
strumented (or re-written) to interface with the serverless
framework [8, 14]. Additionally, since serverless functions
are ephemeral, data has to be stored in persistent storage
for subsequent functions to operate on it. On AWS Lambda
the output of functions is stored in S3, which can introduce
significant overheads compared to in-memory computation.

Fig. 21 (top) shows the performance and cost of each end-
to-end service on traditional containers on Amazon EC2
versus AWS Lambda functions. Each microservice is instru-
mented to interface with Lambda’s API. For a number of
microservices written in languages that are not currently
supported by Lambda, we also had to reimplement the mi-
croservice logic. In the case of EC2, each service uses between
20-64 m5.12xlarge instances. We run each service for 10

minutes. The margins of box plots show the 25th and 75th la-
tency percentiles, while the whiskers show the 5th and 95th .
In Lambda, we show performance and cost both for the de-
fault persistent storage (S3), and for a configuration that uses
the memory of four additional EC2 instances to maintain
intermediate state passed through dependent microservices.
Latency is considerably higher for Lambda when using

S3, primarily due to the overhead and rate limiting of the re-
mote persistent storage. This occurs even though the amount
of data transfered between microservices is small, to ad-
here to the design principle that microservices should be
mostly stateless [18]. The majority of this overhead disap-
pears when using remote memory to pass state between
dependent serverless functions. Even in this case though,
performance variability is higher in Lambda, as functions
can be placed anywhere in the datacenter, incurring variable
network latencies, and suffering interference from external
functions co-scheduled on the same physical machines (EC2
instances are dedicated to our services). Note that even in
the EC2 scenario, dependent microservices are placed on
different physical machines to ensure a fair comparison in
terms of network traffic. On the other hand, cost is almost an
order of magnitude lower for Lambda, especially when using
S3, as resources are only charged on a per-request basis.
The bottom of Fig. 21 highlights the ability of serverless

to elastically scale resources on demand. The input load is
real user traffic in Social Network, which follows a diurnal
pattern. In the interest of cost, we have compressed the load
pattern to a shorter period of time and replayed it using
our open-loop workload generator. Even though EC2 ex-
periences lower tail latency than Lambda during low load
periods, consistent with the findings above, when load in-
creases, Lambda adjusts resources to user demand faster
than EC2. This is because the increased number of requests
translates to more Lambda functions without requiring the
user to intervene. In comparison, in EC2, we use an autoscal-
ing mechanism that examines utilization, and scales allo-
cations by requesting extra instances, when it exceeds a
pre-determined threshold (70% in this case, consistent with
EC2 default autoscaler [20]). This has a negative impact on
latency, since the system waits for load to increase substan-
tially before employing additional resources, and initializing
new resources is not instantaneous. For microservices to
reach the potential serverless offeres, they need to remain
mostly stateless, and leverage in-memory primitives to pass
data between dependent functions.

8 Tail At Scale Implications
We now focus on the Social Network service to study the
tail at scale effects of microservices, i.e., effects that occur
because of the large-scale of systems and applications [28].
We The Social Network has several hundred registered users,
and 165 active daily users on average. The input load for this

0 100 200 300 400 500 600

Time (s)

M
ic

ro
s
e

rv
ic

e
s
 I

n
s
ta

n
c
e

s

100

101

102

103

L
a

te
n

c
y
 i
n

c
re

a
s
e

 (
%

)
Front-end

Back-end

0 20 40 60 80 100
Skew (%)

0.0

0.2

0.4

0.6

0.8

1.0

M
a

x
 Q

P
S

 a
t

Q
o

S

Request Skew

0 1 2 3 4 5

Slow Servers (%)

0.0

0.2

0.4

0.6

0.8

1.0

M
a

x
 Q

P
S

 a
t

Q
o

S

Micro (40)

Micro (100)

Micro (200)

Mono (40)

Mono (100)

Mono (200)

Figure 22. (a) Cascading hotspots in the large-scale Social
Network deployment, and tail at scale effects from (b) request
skew, and (c) slow servers.

study is real user-generated traffic. To scale to larger clusters
than our local infrastructure allows, we deploy the service
on a dedicated EC2 cluster with 40 up to 200 c5.18xlarge
instances (72 vCPUs, 144GB RAM each).
Large-scale cascading hotspots: Fig. 22a shows the perfor-
mance impact of dependencies betweenmicroservices on 100
EC2 instances. Microservices on the y-axis are again ordered
from the back-end in the top to the front-end in the bottom.
While initially all microservices are behaving nominally, at
t = 260s the middle tiers, and specifically composePost, and
readPost become saturated due to a switch routing miscon-
figuration that overloaded one instance of each microservice,
instead of load balancing requests across different instances.
This in turn causes their downstream services to saturate,
causing a similar waterfall pattern in per-tier latency to the
one in Fig. 19. Towards the end of the sampled time (t > 500s)
the back-end services also become saturated for a similar
reason, causing microservices earlier in the critical path to
saturate. This is especially evident for microservices in the
middle of the y-axis (bright yellow), whose performance was
already degraded from the previous QoS violation. To allow
the system to recover in this case we employed rate limit-
ing, which constrains the admitted user traffic until current
hotspots dissipate. Even though rate limiting is effective, it
affects user experience by dropping a fraction of requests.
Request skew: Load is rarely uniform in user-facing cloud
services, with some users being responsible for a dispropor-
tionate amount of generated load. Real traffic in the Social
Network usually adheres to this principle, with a small frac-
tion of users, around 5% being responsible for more than 30%
of the requests. To study request skew to its extreme we ad-
ditionally inject synthetic users that generate a much larger
number of requests than typical users. Specifically, we vary
skew from 0 to 99%, where skew is defined as [100−u], with
u the fraction of users initiating 90% of total requests. Skew
of 0% means uniform request distribution. Fig. 22b shows the
impact of skew on the max sustained load for which QoS is
met. When skew=0%, the service achieves its max QPS under
QoS for that cluster size (100 instances). As skew increases,
goodput (throughput under QoS) quickly drops, and when
less than 20% of users are responsible for the majority of
requests, goodput is almost zero.

Impact of slow servers: Fig. 22c shows the impact a small
number of slow servers has on overall QoS as cluster size in-
creases. We purposely slow down a small fraction of servers
by enabling aggressive power management, which we al-
ready saw is detrimental to performance (Sec. 4). For large
clusters (>100 instances), when 1% or more of servers behave
poorly, the goodput is almost zero, as these servers host at
least one microservice on the critical path, degrading QoS.
Even for small clusters (40 instances), a single slow server is
the most the service can sustain and still achieve some QPS
under QoS. Finally, we compare the impact of slow servers
in clusters of equal size for the monolithic design of Social
Network. In this case goodput is higher, even as cluster sizes
grow, since a single slow server only affects the instance of
the monolith hosted on it, while the other instances operate
independently. The only exception are back-end databases,
which even for the monolith are shared across application
instances, and sharded across machines. If one of the slow
servers is hosting a database shard, all requests directed to
that instance are degraded. In general, the more complex an
application’s microservices graph, the more impactful slow
servers are, as the probability that a service on the critical
path will be degraded increases.
9 Conclusions
We have presented DeathStarBench, an open-source suite
for cloud and IoT microservices. The suite includes repre-
sentative services, such as social networks, video streaming,
e-commerce, and swarm control services. We use DeathStar-
Bench to study the implications microservices have across
the cloud system stack, from datacenter server design and
hardware acceleration, to OS and networking overheads, and
cluster management and programming framework design.
We also quantify the tail-at-scale effects of microservices as
clusters grow in size, and services become more complex,
and show that microservices put increased pressure in low
tail latency and performance predictability.

DeathStarBench Release
The applications in DeathStarBench are publicly available
at: http://microservices.ece.cornell.edu under a GPL licence.
We welcome feedback and suggestions, and hope that by
releasing the benchmark suite publicly, we can encourage
more work in this emerging field.

Acknowledgements
We sincerely thankChristos Kozyrakis, Daniel Sanchez, David
Lo, as well as the academic and industrial users of the bench-
mark suite, and the anonymous reviewers for their feedback
on earlier versions of this manuscript. This work was sup-
ported in part by NSF grant CNS-1422088, a Facebook Faculty
Research Award, a John and Norma Balen Sesquicentennial
Faculty Fellowship, and generous donations from Google
Compute Engine, Windows Azure, and Amazon EC2.

http://microservices.ece.cornell.edu
http://microservices.ece.cornell.edu

References
[1] [n. d.]. Apache Thrift. https://thrift.apache.org.
[2] [n. d.]. ardrone-autonomy. https://ardrone-autonomy.readthedocs.io/

en/latest/.
[3] [n. d.]. AWS Lambda. https://aws.amazon.com/lambda.
[4] [n. d.]. Conway’s Law. http://www.melconway.com/Home/Conways_

Law.html.
[5] [n. d.]. Cylon.js. https://cylonjs.com/.
[6] [n. d.]. Decomposing Twitter: Adventures in Service-

Oriented Architecture. https://www.slideshare.net/InfoQ/
decomposing-twitter-adventures-in-serviceoriented-architecture.

[7] [n. d.]. Finagle: An extensible RPC system for the JVM. https://twitter.
github.io/finagle.

[8] [n. d.]. fission: Serverless Functions for Kubernetes. http://fission.io.
[9] [n. d.]. gRPC: A high performance open-source universal RPC frame-

work. https://grpc.io.
[10] [n. d.]. Intel VTune Amplifier. https://software.intel.com/en-us/

intel-vtune-amplifier-xe.
[11] [n. d.]. jimp: An image processing library in node.js with zero external

dependencies. https://github.com/oliver-moran/jimp.
[12] [n. d.]. mongoDB. https://www.mongodb.com.
[13] [n. d.]. NGINX. https://nginx.org/en.
[14] [n. d.]. OpenLambda. https://open-lambda.org.
[15] [n. d.]. RabbitMQ. https://www.rabbitmq.com.
[16] [n. d.]. SockShop: A Microservices Demo Application. https://www.

weave.works/blog/sock-shop-microservices-demo-application.
[17] [n. d.]. Zipkin. http://zipkin.io.
[18] 2016. The Evolution of Microservices. https://www.slideshare.net/

adriancockcroft/evolution-of-microservices-craft-conference.
[19] Adrian Cockroft [n. d.]. Microservices Workshop: Why, what,

and how to get there. http://www.slideshare.net/adriancockcroft/
microservices-workshop-craft-conference.

[20] autoscaleLimit [n. d.]. AWS Autoscaling. http://aws.amazon.com/
autoscaling/.

[21] Luiz Barroso and Urs Hoelzle. 2009. The Datacenter as a Computer: An
Introduction to the Design ofWarehouse-Scale Machines. MC Publishers.

[22] Robert Bell, Yehuda Koren, and Chris Volinsky. 2007. The BellKor 2008
Solution to the Netflix Prize. Technical Report.

[23] Leon Bottou. [n. d.]. Large-Scale Machine Learning with Stochastic
Gradient Descent. In Proceedings of the International Conference on
Computational Statistics (COMPSTAT). Paris, France, 2010.

[24] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. 2016. A Cloud-scale Acceleration Archi-
tecture. In The 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO-49). IEEE Press, Piscataway, NJ, USA, Arti-
cle 7, 13 pages. http://dl.acm.org/citation.cfm?id=3195638.3195647

[25] Shuang Chen, Shay Galon, Christina Delimitrou, Srilatha Manne, and
Jose F. Martinez. 2017. Workload Characterization of Interactive Cloud
Services on Big and Small Server Platforms. In Proc. of IISWC.

[26] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F.
Wenisch. 2014. The Mystery Machine: End-to-end Performance
Analysis of Large-scale Internet Services. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementa-
tion (OSDI’14). USENIX Association, Berkeley, CA, USA, 217–231.
http://dl.acm.org/citation.cfm?id=2685048.2685066

[27] Eric S. Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Adrian M. Caulfield, Todd Massengill, Ming Liu, Daniel Lo, Shlomi
Alkalay, Michael Haselman, Maleen Abeydeera, Logan Adams, Hari
Angepat, Christian Boehn, Derek Chiou, Oren Firestein, Alessandro
Forin, Kang Su Gatlin, Mahdi Ghandi, Stephen Heil, Kyle Holohan,
Ahmad El Husseini, Tamás Juhász, Kara Kagi, Ratna Kovvuri, Sitaram

Lanka, Friedel van Megen, Dima Mukhortov, Prerak Patel, Brandon
Perez, Amanda Rapsang, Steven K. Reinhardt, Bita Rouhani, Adam
Sapek, Raja Seera, Sangeetha Shekar, Balaji Sridharan, Gabriel Weisz,
LisaWoods, Phillip Yi Xiao, Dan Zhang, Ritchie Zhao, and Doug Burger.
2018. Serving DNNs in Real Time at Datacenter Scale with Project
Brainwave. IEEE Micro 38, 2 (2018), 8–20. https://doi.org/10.1109/MM.
2018.022071131

[28] Jeffrey Dean and Luiz Andre Barroso. [n. d.]. The Tail at Scale. In
CACM, Vol. 56 No. 2, Pages 74-80.

[29] Christina Delimitrou and Christos Kozyrakis. [n. d.]. Paragon: QoS-
Aware Scheduling for Heterogeneous Datacenters. In Proceedings of
the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). Houston,
TX, USA, 2013.

[30] Christina Delimitrou and Christos Kozyrakis. [n. d.]. QoS-Aware Sched-
uling in Heterogeneous Datacenters with Paragon. In ACM Transac-
tions on Computer Systems (TOCS), Vol. 31 Issue 4. December 2013.

[31] Christina Delimitrou and Christos Kozyrakis. [n. d.]. Quality-
of-Service-Aware Scheduling in Heterogeneous Datacenters with
Paragon. In IEEE Micro Special Issue on Top Picks from the Computer
Architecture Conferences. May/June 2014.

[32] Christina Delimitrou and Christos Kozyrakis. [n. d.]. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In Proceedings of the
Nineteenth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS). Salt Lake City,
UT, USA, 2014.

[33] Christina Delimitrou and Christos Kozyrakis. 2016. HCloud: Resource-
Efficient Provisioning in Shared Cloud Systems. In Proceedings of the
Twenty First International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS).

[34] Christina Delimitrou and Christos Kozyrakis. 2017. Bolt: I Know
What You Did Last Summer... In The Cloud. In Proceedings of the
Twenty Second International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

[35] Christina Delimitrou and Christos Kozyrakis. 2018. Amdahl’s Law for
Tail Latency. In Communications of the ACM (CACM).

[36] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis. 2015.
Tarcil: Reconciling Scheduling Speed and Quality in Large Shared Clus-
ters. In Proceedings of the Sixth ACM Symposium on Cloud Computing
(SOCC).

[37] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. [n. d.]. Clearing
the Clouds: A Study of Emerging Scale-out Workloads on Modern
Hardware. In Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). London, England, UK, 2012, 12. https://doi.org/10.
1145/2150976.2150982

[38] Daniel Firestone, Andrew Putnam, SambhramaMundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18). USENIX Association, Renton, WA, 51–66. https:
//www.usenix.org/conference/nsdi18/presentation/firestone

[39] Brad Fitzpatrick. [n. d.]. Distributed caching with memcached. In
Linux Journal, Volume 2004, Issue 124, 2004.

[40] Jason Flinn. September 2012. Cyber Foraging: BridgingMobile and Cloud
Computing. Synthesis Lectures on Mobile and Pervasive Computing.

https://thrift.apache.org
https://ardrone-autonomy.readthedocs.io/en/latest/
https://ardrone-autonomy.readthedocs.io/en/latest/
https://aws.amazon.com/lambda
http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
https://cylonjs.com/
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://www.slideshare.net/InfoQ/decomposing-twitter-adventures-in-serviceoriented-architecture
https://twitter.github.io/finagle
https://twitter.github.io/finagle
http://fission.io
https://grpc.io
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://github.com/oliver-moran/jimp
https://nginx.org/en
https://open-lambda.org
https://www.rabbitmq.com
https://www.weave.works/blog/sock-shop-microservices-demo-application
https://www.weave.works/blog/sock-shop-microservices-demo-application
http://zipkin.io
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
http://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
http://aws.amazon.com/autoscaling/
http://aws.amazon.com/autoscaling/
http://dl.acm.org/citation.cfm?id=3195638.3195647
http://dl.acm.org/citation.cfm?id=2685048.2685066
https://doi.org/10.1109/MM.2018.022071131
https://doi.org/10.1109/MM.2018.022071131
https://doi.org/10.1145/2150976.2150982
https://doi.org/10.1145/2150976.2150982
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://www.usenix.org/conference/nsdi18/presentation/firestone

[41] Yu Gan and Christina Delimitrou. 2018. The Architectural Implications
of Cloud Microservices. In Computer Architecture Letters (CAL), vol.17,
iss. 2.

[42] Vishal Gupta and Karsten Schwan. [n. d.]. Brawny vs. Wimpy: Evalua-
tion and Analysis of Modern Workloads on Heterogeneous Processors.
In Proceedings of IEEE International Symposium on Parallel &Distributed
Processing (IPDPS). Boston, MA, 2013.

[43] Ragib Hasan, Md. Mahmud Hossain, and Rasib Khan. 2015. Aura:
An IoT Based Cloud Infrastructure for Localized Mobile Computation
Outsourcing. In 3rd IEEE International Conference on Mobile Cloud
Computing, Services, and Engineering, MobileCloud. San Francisco, CA,
183–188. https://doi.org/10.1109/MobileCloud.2015.37

[44] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li,
Austin Rovinski, Arjun Khurana, Ronald G. Dreslinski, Trevor Mudge,
Vinicius Petrucci, Lingjia Tang, and Jason Mars. 2015. Sirius: An Open
End-to-End Voice and Vision Personal Assistant and Its Implications
for Future Warehouse Scale Computers. In Proceedings of the Twentieth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’15). ACM, New York, NY,
USA, 223–238. https://doi.org/10.1145/2694344.2694347

[45] BenHindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, AnthonyD.
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. [n. d.]. Mesos: A
Platform for Fine-Grained Resource Sharing in the Data Center. In
Proceedings of NSDI. Boston, MA, 2011.

[46] Urs Hölzle. [n. d.]. Brawny cores still beat wimpy cores, most of the
time. In IEEE Micro. 2010.

[47] Vijay Janapa Reddi, Benjamin C. Lee, Trishul Chilimbi, and Kushagra
Vaid. [n. d.]. Mobile Processors for Energy-Efficient Web Search. In
ACM Transactions on Computer Systems, Vol. 29, No. 4, Article 9. 2011.

[48] Vijay Janapa Reddi, Benjamin C. Lee, Trishul Chilimbi, and Kusha-
gra Vaid. 2010. Web Search Using Mobile Cores: Quantifying and
Mitigating the Price of Efficiency. In Proceedings of the 37th Annual In-
ternational Symposium on Computer Architecture (ISCA ’10). ACM, New
York, NY, USA, 314–325. https://doi.org/10.1145/1815961.1816002

[49] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-
den, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris
Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb,
Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert
Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexan-
der Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen
Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adri-
ana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi
Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew
Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gre-
gory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan,
Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017.
In-Datacenter Performance Analysis of a Tensor Processing Unit. In
Proceedings of the 44th Annual International Symposium on Computer
Architecture (ISCA ’17). ACM, New York, NY, USA, 1–12.

[50] Svilen Kanev, Juan Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2014. Pro-
filing a warehouse-scale computer. In ISCA ’15 Proceedings of the 42nd
Annual International Symposium on Computer Architecture. 158–169.

[51] Harshad Kasture and Daniel Sanchez. 2016. TailBench: A Benchmark
Suite and Evaluation Methodology for Latency-Critical Applications.
In Proceedings of the IEEE International Symposium on Workload Char-
acterization (IISWC).

[52] Cansu Kaynak, Boris Grot, and Babak Falsafi. 2013. SHIFT: shared his-
tory instruction fetch for lean-core server processors. In The 46th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO-
46). Davis, CA, 272–283. https://doi.org/10.1145/2540708.2540732

[53] Krzysztof C. Kiwiel. [n. d.]. Convergence and efficiency of subgradient
methods for quasiconvex minimization. InMathematical Programming
(Series A) (Berlin, Heidelberg: Springer) 90 (1): pp. 1-25, 2001.

[54] David Koeplinger, Raghu Prabhakar, Yaqi Zhang, Christina Delim-
itrou, Christos Kozyrakis, and Kunle Olukotun. 2016. Automatic
Generation of Efficient Accelerators for Reconfigurable Hardware.
In 43rd ACM/IEEE Annual International Symposium on Computer Ar-
chitecture, ISCA 2016, Seoul, South Korea, June 18-22, 2016. 115–127.
https://doi.org/10.1109/ISCA.2016.20

[55] Nane Kratzke and Peter-Christian Quint. 2016. Ppbench. In Proceedings
of the 6th International Conference on Cloud Computing and Services
Science - Volume 1 and 2 (CLOSER 2016). SCITEPRESS - Science and
Technology Publications, Lda, Portugal, 223–231.

[56] Chien-An Lai, Josh Kimball, Tao Zhu, Qingyang Wang, and Calton Pu.
2017. milliScope: A Fine-Grained Monitoring Framework for Perfor-
mance Debugging of n-Tier Web Services. In 37th IEEE International
Conference on Distributed Computing Systems, ICDCS 2017, Atlanta,
GA, USA, June 5-8, 2017. 92–102.

[57] Jacob Leverich and Christos Kozyrakis. [n. d.]. Reconciling High Server
Utilization and Sub-millisecond Quality-of-Service. In Proceedings of
EuroSys. Amsterdam, The Netherlands, 2014.

[58] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble.
2014. Tales of the Tail: Hardware, OS, and Application-level Sources of
Tail Latency. In Proceedings of the ACM Symposium on Cloud Computing
(SOCC ’14). ACM, New York, NY, USA, Article 9, 14 pages.

[59] Jack Li, Qingyang Wang, Chien-An Lai, Junhee Park, Daisaku
Yokoyama, and Calton Pu. 2014. The Impact of Software Resource
Allocation on Consolidated n-Tier Applications. In 2014 IEEE 7th Inter-
national Conference on Cloud Computing, Anchorage, AK, USA, June 27
- July 2, 2014. 320–327.

[60] Ching-Chi Lin, Pangfeng Liu, and Jan-Jan Wu. [n. d.]. Energy-
Aware Virtual Machine Dynamic Provision and Scheduling for Cloud
Computing. In Proceedings of the 2011 IEEE 4th International Confer-
ence on Cloud Computing (CLOUD). Washington, DC, USA, 2011, 2.
https://doi.org/10.1109/CLOUD.2011.94

[61] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Barroso, and
Christos Kozyrakis. [n. d.]. Towards Energy Proportionality for Large-
scale Latency-critical Workloads. In Proceedings of the 41st Annual
International Symposium on Computer Architecuture (ISCA). Minneapo-
lis, MN, 2014.

[62] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. [n. d.]. Heracles: Improving Re-
source Efficiency at Scale. In Proc. of the 42Nd Annual International
Symposium on Computer Architecture (ISCA). Portland, OR, 2015.

[63] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David
Scott, Balraj Singh, Thomas Gazagnaire, Steven Smith, Steven Hand,
and Jon Crowcroft. 2013. Unikernels: Library Operating Systems for
the Cloud. In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’13). ACM, New York, NY, USA, 461–472. https:
//doi.org/10.1145/2451116.2451167

[64] Jason Mars and Lingjia Tang. [n. d.]. Whare-map: heterogeneity in
"homogeneous" warehouse-scale computers. In Proceedings of ISCA.
Tel-Aviv, Israel, 2013.

[65] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-
Dietrich Weber, and Thomas F. Wenisch. 2011. Power management
of online data-intensive services. In Proceedings of the 38th annual
international symposium on Computer architecture. 319–330.

[66] Ripal Nathuji, Canturk Isci, and Eugene Gorbatov. [n. d.]. Exploiting
platform heterogeneity for power efficient data centers. In Proceedings
of ICAC. Jacksonville, FL, 2007.

[67] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. [n. d.]. Q-
Clouds: Managing Performance Interference Effects for QoS-Aware

https://doi.org/10.1109/MobileCloud.2015.37
https://doi.org/10.1145/2694344.2694347
https://doi.org/10.1145/1815961.1816002
https://doi.org/10.1145/2540708.2540732
https://doi.org/10.1109/ISCA.2016.20
https://doi.org/10.1109/CLOUD.2011.94
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167

Clouds. In Proceedings of EuroSys. Paris,France, 2010.
[68] Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. [n.

d.]. Sparrow: Distributed, Low Latency Scheduling. In Proceedings of
SOSP. Farminton, PA, 2013.

[69] Raghu Prabhakar, David Koeplinger, Kevin J. Brown, HyoukJoong Lee,
Christopher De Sa, Christos Kozyrakis, and Kunle Olukotun. 2016.
Generating Configurable Hardware from Parallel Patterns. In Pro-
ceedings of the Twenty-First International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’16, Atlanta, GA, USA, April 2-6, 2016. 651–665.

[70] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matthew Feldman,
Tian Zhao, Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and
Kunle Olukotun. 2017. Plasticine: A Reconfigurable Architecture For
Parallel Paterns. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture, ISCA 2017, Toronto, ON, Canada, June
24-28, 2017. 389–402. https://doi.org/10.1145/3079856.3080256

[71] Andrew Putnam, Adrian M. Caulfield, Eric S. Chung, Derek Chiou,
Kypros Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fow-
ers, Gopi Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck,
Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James
Larus, Eric Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi
Xiao, and Doug Burger. 2014. A Reconfigurable Fabric for Accelerat-
ing Large-Scale Datacenter Services. In Proc. of the 41st Intl. Symp. on
Computer Architecture.

[72] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and
Robert Hundt. 2010. Google-Wide Profiling: A Continuous Pro-
filing Infrastructure for Data Centers. IEEE Micro (2010), 65–79.
http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68

[73] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek, and
John Wilkes. [n. d.]. Omega: flexible, scalable schedulers for large
compute clusters. In Proceedings of EuroSys. Prague, Czech Republic,
2013.

[74] D. Sidler, G. Alonso, M. Blott, K. Karras, Kees Vissers, and Raymond
Carley. [n. d.]. Scalable 10Gbps TCP/IP Stack Architecture for Recon-
figurable Hardware. In Proceedings of FCCM. 2015.

[75] D. Sidler, Z. Istvan, and G. Alonso. [n. d.]. Low-Latency TCP/IP Stack
for Data Center Applications. In Proceedings of FPL. 2016.

[76] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat
Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chan-
dan Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing
Infrastructure. Technical Report. Google, Inc. https://research.google.
com/archive/papers/dapper-2010-1.pdf

[77] David Sprott and Lawrence Wilkes. January 2004. Understanding
Service-Oriented Architecture, CBDI Forum.

[78] Akshitha Sriraman and Thomas F. Wenisch. 2018. uSuite: A Bench-
mark Suite for Microservices. In 2018 IEEE International Symposium on

Workload Characterization, IISWC 2018, Raleigh, NC, USA, September
30 - October 2, 2018. 1–12.

[79] Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara. [n. d.]. Work-
load characterization for microservices. In Proc. of IISWC. 2016.

[80] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Op-
penheimer, Eric Tune, and John Wilkes. 2015. Large-scale cluster
management at Google with Borg. In Proceedings of the European
Conference on Computer Systems (EuroSys). Bordeaux, France.

[81] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang,
Yongqiang He, Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang,
Chen Zheng, Gang Lu, Kent Zhan, Xiaona Li, and Bizhu Qiu. 2014.
BigDataBench: A big data benchmark suite from internet services.
2014 IEEE 20th International Symposium on High Performance Com-
puter Architecture (HPCA) 00 (2014), 488–499. https://doi.org/doi.
ieeecomputersociety.org/10.1109/HPCA.2014.6835958

[82] QingyangWang, Chien-An Lai, Yasuhiko Kanemasa, Shungeng Zhang,
and Calton Pu. 2017. A Study of Long-Tail Latency in n-Tier Systems:
RPC vs. Asynchronous Invocations. In 37th IEEE International Confer-
ence on Distributed Computing Systems, ICDCS 2017, Atlanta, GA, USA,
June 5-8, 2017. 207–217.

[83] Ian H. Witten, Eibe Frank, and Geoffrey Holmes. [n. d.]. Data Mining:
Practical Machine Learning Tools and Techniques. 3rd Edition.

[84] Hailong Yang, Alex Breslow, Jason Mars, and Lingjia Tang. [n. d.].
Bubble-flux: precise online QoS management for increased utilization
in warehouse scale computers. In Proceedings of ISCA. 2013.

[85] Hailong Yang, Quan Chen, Moeiz Riaz, Zhongzhi Luan, Lingjia Tang,
and Jason Mars. 2017. PowerChief: Intelligent Power Allocation for
Multi-Stage Applications to Improve Responsiveness on Power Con-
strained CMP. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA,
133–146.

[86] Xiang Zhou, Xin Peng, Tao Xie, Jun Sun, Chenjie Xu, Chao Ji, and
Wenyun Zhao. 2018. Benchmarking Microservice Systems for Soft-
ware Engineering Research. In Proceedings of the 40th International
Conference on Software Engineering: Companion Proceeedings (ICSE ’18).
ACM, New York, NY, USA, 323–324.

[87] Tao Zhu, Jack Li, Josh Kimball, Junhee Park, Chien-An Lai, Calton Pu,
and QingyangWang. 2017. Limitations of Load Balancing Mechanisms
for N-Tier Systems in the Presence of Millibottlenecks. In 37th IEEE
International Conference on Distributed Computing Systems, ICDCS
2017, Atlanta, GA, USA, June 5-8, 2017. 1367–1377.

[88] Yuhao Zhu, Daniel Richins, Matthew Halpern, and Vijay Janapa Reddi.
2015. Microarchitectural Implications of Event-driven Server-sideWeb
Applications. In Proceedings of the 48th International Symposium on
Microarchitecture (MICRO-48). ACM, New York, NY, USA, 762–774.
https://doi.org/10.1145/2830772.2830792

https://doi.org/10.1145/3079856.3080256
http://www.computer.org/portal/web/csdl/doi/10.1109/MM.2010.68
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://doi.org/doi.ieeecomputersociety.org/10.1109/HPCA.2014.6835958
https://doi.org/doi.ieeecomputersociety.org/10.1109/HPCA.2014.6835958
https://doi.org/10.1145/2830772.2830792

	Abstract
	1 Introduction
	2 Related Work
	3 The DeathStarBench Suite
	3.1 Design Principles
	3.2 Social Network
	3.3 Media Service
	3.4 E-Commerce Service
	3.5 Banking System
	3.6 Swarm Coordination
	3.7 Methodological Challenges of Microservices
	3.8 Provisioning & Query Diversity

	4 Architectural Implications
	5 OS & Networking Implications
	6 Cluster Management Implications
	7 Application & Programming Framework Implications
	8 Tail At Scale Implications
	9 Conclusions
	Acknowledgements
	References

